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Problems

Problem 4.1. Prove the Eddington-Barbier relation, that if S⌫

is a linear function of ⌧, then I⌫(0, µ) = S⌫(⌧ = µ) and F⌫(0) =
⇡S⌫(⌧ = 2/3). These results underpin the Eddington-Barbier
approximation.

Problem 4.2. The variation of emergent specific intensity of the
Sun is given approximately by

I�(0, µ) ⇡ I�(0,0)[a0 + a1µ + 2a2µ
2], (4.109)

with the parameters I�(0,0), a0, a1, and a2 having the values given
in the table.

� a0 a1 a2 I�(0,0)
µm erg s�1 cm�3

0.3727 0.1435 0.9481 �0.0920 4.2 ⇥ 1014

0.4260 0.1754 0.9740 �0.1520 4.5 ⇥ 1014

0.5010 0.2593 0.8724 �0.1336 4.0 ⇥ 1014

0.6990 0.4128 0.7525 �0.1761 2.5 ⇥ 1014

0.8660 0.5141 0.6497 �0.1657 1.6 ⇥ 1014

1.2250 0.5969 0.5667 �0.1646 7.7 ⇥ 1013

1.6550 0.6894 0.4563 �0.1472 3.6 ⇥ 1013

2.0970 0.7249 0.4100 �0.1360 1.6 ⇥ 1013

(a) Assuming that the solar atmosphere is in LTE and ignoring
scattering, describe how to calculate the temperature T(⌧)
as a function of optical depth ⌧ and the optical depth ⌧(T)
as a function of temperature T and wavelength �. (There
is no need to solve these equations explicitly, just describe
clearly how to obtain them.)

(b) Plot the relative values of the extinction coe�cient � at
5800 K as a function of wavelength �.

Note that if the source function in a plane-parallel atmosphere
is given by

S⌫(⌧) =
’

a⌫,n⌧
n, (4.110)

then one can show that the emergent intensity is given by

I⌫(0, µ) =
’

a⌫,nn!µn. (4.111)

This, is a generalization of the Eddington-Barbier relation.

Problem 4.3. Show that in the di�usion approximation the Ed-
dington factor f is 1/3 to first order in dB⌫/d⌧. This result is used
in the development of the solution to the grey atmosphere.

Problem 4.4. Consider a gas with two components A and B
with extinction coe�cients �A and �B given by

�A =

⇢
p for ⌫ < ⌫0
q for ⌫ > ⌫0

(4.112)

and

�B =

⇢
q for ⌫ < ⌫0
p for ⌫ > ⌫0, (4.113)

where p and q are constants. Show that in general �R , �AR + �
B

R
,

in which �A
R

and �B
R

are the Rosseland mean opacities of the
individual components.

A consequence of this is that we cannot publish, say, Rosse-
land mean extinction coe�cients for electrons, hydrogen, helium,
etc., and then combine these to give the correct Rosseland mean
opacity for a specific mixture. Instead, we must first calculate
the appropriate total coe�cient � and then calculate the total
Rosseland mean extinction coe�cient.

Problem 4.5. Consider a grey atmosphere radiating into free
space.

(a) Derive an expression for f (0), the Eddington factor at the
surface, when S = a + b⌧.

(b) Using this expression, show that the Eddington approximate
solution S = 3H(⌧ + 2/3) gives f (0) = 17/42 .

(c) Show that the Eddington approximate solution is not self-
consistent in its predictions of f (0).

Problem 4.6. Consider an atmosphere in LTE in the absence
of scattering, and whose temperature structure is given by the
Eddington approximation to the grey atmosphere,

T
4 =

3
4

T
4
e�(⌧ +

2
3
). (4.114)

(a) Consider the case in which the opacity is grey. Use the
Eddington-Barbier approximation to show that the emer-
gent flux F⌫ is approximately equal to that of a black body
at the e�ective temperature of the atmosphere radiating into
free space.

(b) Consider the case in which the opacity is slightly non-grey,
with

⌧(⌫) =
⇢
(2/3)⌧ ⌫ < ⌫0
(3/2)⌧ ⌫ > ⌫0

, (4.115)

but with the same temperature structure in terms of ⌧. Use
the Eddington-Barbier approximation to obtain an approx-
imate expression for the emergent flux.

(c) Graph the approximate expressions for the emergent fluxes
for both cases, assuming h⌫0 = 3kTe� . You may graph the
result either for F⌫ and ⌫ for a representative temperature of
10,000 K or in the normalized quantities ↵ and Ĥ↵.

Note that the atmospheres in both cases are not in radiative equlib-
rium, in (a) because we use an approximate solution and in (b)
because we make no attempt to correct the temperature structure
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for the non-greyness of the atmosphere. Nevertheless, the result
obtained in (b) is quantitatively correct in many atmospheres; re-
gions of lower opacity tend to have higher flux and regions of
higher opacity tend to have lower flux. This is a simple model for
the change in flux in the vicinity of an ionization edge, in which
there is a step-like increase in opacity with increasing frequency.


