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Problems

Problem 4.1. Prove the Eddington-Barbier relation, that if S,
is a linear function of 7, then 7,,(0,u) = S,(t = ) and F,(0) =
Sy (t = 2/3). These results underpin the Eddington-Barbier
approximation.

Problem 4.2. The variation of emergent specific intensity of the
Sun is given approximately by

120, p) ~ 13(0,0)[ag + ar pt + 2az 4], (4.109)

with the parameters 1,(0,0), ag, a1, and a; having the values given
in the table.

A ap aj ay I/[ (0, O)
um ergs~'em™3

0.3727 0.1435 0.9481 —0.0920 4.2x10™
04260 0.1754 09740 -0.1520 4.5x 10"
0.5010 0.2593 0.8724 -0.1336 4.0x 10
0.6990 0.4128 0.7525 -0.1761 2.5x 10"
0.8660 0.5141 0.6497 —0.1657 1.6x 10"
1.2250  0.5969 0.5667 -0.1646 7.7 x 10'3
1.6550 0.6894 0.4563 -0.1472 3.6x10'3
2.0970 0.7249 0.4100 -0.1360 1.6 x 10'3

(a) Assuming that the solar atmosphere is in LTE and ignoring
scattering, describe how to calculate the temperature 7(7)
as a function of optical depth 7 and the optical depth 7(T)
as a function of temperature 7 and wavelength A. (There
is no need to solve these equations explicitly, just describe
clearly how to obtain them.)

(b) Plot the relative values of the extinction coefficient y at

5800 K as a function of wavelength A.

Note that if the source function in a plane-parallel atmosphere
is given by

S, (1) = Z av,n7n7

then one can show that the emergent intensity is given by

(4.110)

5,0, p) = Z av,nn!,un'

This, is a generalization of the Eddington-Barbier relation.

4.111)

Problem 4.3. Show that in the diffusion approximation the Ed-
dington factor f is 1/3 to first order in dB, /d7. This result is used
in the development of the solution to the grey atmosphere.

Problem 4.4. Consider a gas with two components A and B
with extinction coefficients y“ and y? given by
A p forv <y
X =

qg forv > (@.112)

and

q forv <y

p forv >, (4.113)

x? = {
where p and g are constants. Show that in general yg # /\{;3 + )(g ,
in which Xﬁ and )(g are the Rosseland mean opacities of the
individual components.

A consequence of this is that we cannot publish, say, Rosse-
land mean extinction coeflicients for electrons, hydrogen, helium,
etc., and then combine these to give the correct Rosseland mean
opacity for a specific mixture. Instead, we must first calculate
the appropriate total coefficient y and then calculate the total
Rosseland mean extinction coefficient.

Problem 4.5. Consider a grey atmosphere radiating into free
space.

(a) Derive an expression for f(0), the Eddington factor at the
surface, when S = a + br.

(b) Using this expression, show that the Eddington approximate
solution S = 3H(7 + 2/3) gives f(0) = 17/42 .

(c) Show that the Eddington approximate solution is not self-
consistent in its predictions of f(0).

Problem 4.6. Consider an atmosphere in LTE in the absence

of scattering, and whose temperature structure is given by the

Eddington approximation to the grey atmosphere,
4 _ 3

2
4
T = ZTeff(T + 5)

(4.114)

(a) Consider the case in which the opacity is grey. Use the
Eddington-Barbier approximation to show that the emer-
gent flux F, is approximately equal to that of a black body
at the effective temperature of the atmosphere radiating into
free space.

(b)

Consider the case in which the opacity is slightly non-grey,
with

2/3)r v<w

B/t v>vy @.115)

T(v) = {
but with the same temperature structure in terms of 7. Use
the Eddington-Barbier approximation to obtain an approx-
imate expression for the emergent flux.

(c) Graph the approximate expressions for the emergent fluxes
for both cases, assuming hvy = 3kTeg. You may graph the
result either for F,, and v for a representative temperature of

10,000 K or in the normalized quantities @ and H,,.

Note that the atmospheres in both cases are not in radiative equlib-
rium, in (a) because we use an approximate solution and in (b)
because we make no attempt to correct the temperature structure
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for the non-greyness of the atmosphere. Nevertheless, the result
obtained in (b) is quantitatively correct in many atmospheres; re-
gions of lower opacity tend to have higher flux and regions of
higher opacity tend to have lower flux. This is a simple model for
the change in flux in the vicinity of an ionization edge, in which
there is a step-like increase in opacity with increasing frequency.
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