Problems

Problem 8.1. In FGK stars, hydrogen is predominantly neutral and iron is predominantly singly ionized. Show that at a given temperature (a) $n_{\text{Fe}^0}/n_{\text{H}^-}$ is independent of the electron density; (b) $n_{\text{Fe}^+}/n_{\text{H}^-}$ is inversely proportional to the electron density; and (c) $n_{\text{Fe}^2}/n_{\text{H}^-}$ is inversely proportional to the square of the electron density.

Problem 8.2. Calculate and plot the ratios $R = \chi_-/\chi_+$ of extinction coefficients below and above the Balmer jump in LTE for temperatures between 10³ K and 10⁵ K and hydrogen densities $n_{\rm H}$ of 10¹⁴, 10¹⁵, and 10¹⁶ K.

Plot all of the ratios on the same plot using different line styles for the different densities, with the logarithm of temperature as ordinate and the logarithm of R as abscissa.

To determine the state of matter, ignore the formation of molecules and consider only H⁻, H⁰, H⁺, and electrons. The ionization potentials of H⁻ and H⁰ are 0.754 and 13.60 eV. H⁻ has only one bound state with degeneracy 1 and so its partition function U_{-} is 1. Since the excited states of H⁰ lie so far above the ground state, its partition function U_{0} can be assumed to be 2, independent of the temperature.

To determine the opacities, consider only bound-free absorption from H⁰ in the n = 2 and n = 3 states and H⁻, electron scattering, and free-free absorption from H⁺. The bound-free absorption cross-sections of H⁰ in the n = 2 and n = 3 states and H⁻ at the Balmer limit are 1.58×10^{-17} , 2.08×10^{-18} , and 2.05×10^{-17} cm². The bound-free cross-sections should be multiplied by $(1 - e^{-h\nu/kT})$ to account for stimulated emission. The scattering cross-section of an electron is 6.65×10^{-25} cm². The H⁺ free-free absorption coefficient at the Balmer limit is given by

$$\alpha_{\rm ff} = 6.61 \times 10^{-37} n_e n_+ T^{-0.5} (1 - e^{-h\nu/kT}) \,{\rm cm}^{-1},$$
 (8.19)

in which n_e and n_+ are in cm⁻³, and T is in K.

Explain the dependence of R on density for hot stars. That is, explain why R is almost independent of density for high densities but dependent on density for low densities.