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RESUMEN

ABSTRACT

We study the relativistic self-gravitating, hydrostatic spheres with a poly-

tropic equation of state, considering structures with the polytropic indices

n = 1(0.5)3 and illustrates the results for the relativistic parameters σ =

0− 0.75. We determined the critical relativistic parameter at which the mass

of the polytrope has a maximum value and represents the first mode of radial

instability. For n = 1(0.5)2.5, stable relativistic polytropes occur for σ less

than the critical values 0.42, 0.20, 0.10, and 0.04 respectively, while unstable

relativistic polytropes are obtained when σ is greater than the same values.

When n = 3.0 and σ > 0.5, energetically unstable solutions have occurred.

The results of critical values are in full agreement with those evaluated by sev-

eral authors. Comparisons between analytical and numerical solutions of the

given relativistic functions provide a maximum relative error of order 10−3.

Key Words: Stars: interiors — Stars; mass-radius relation — Methods: power

series — Methods: Analytical — Polytropic gas spheres

1. INTRODUCTION

The polytropic models could be considered simple models of stellar struc-

ture, and it seems like we have in place all of the equations that we would need

to be able to make more sophisticated stellar models by solving the equations

of stellar structure. However, before one dives forward, there is a need to

ask a vital question, whether the calculated models are spherically symmetric

equilibria (stability of the models).

In this category, several authors have investigated the stability of the poly-

tropic models. Bonnor (1958) finds that self-gravitating, polytropic spheres

with n=3 are inconditionally stable to radial perturbations. For the first time,

Chandrasekhar (1964) stated the radial stability equation. Earlier methods

used to examine the stability of polytropic stars are listed in Bardeen et al.

(1966). More recently, the stability of polytropes with different polytropic

indices has been described by Horedt (2013) and Raga et al. (2020).
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In various stellar structures as white dwarfs, neutron stars, black holes

and supermasive stars and cluster of stars, relativistic effects play a signifi-

cant role, Sen and Roy (1954), Sharma, (1988). Tooper (1964) has performed

a relativistic analysis of the polytropic equation of state. Tooper derived the

non-relativistic Lane-Emden equation from two nonlinear differential equa-

tions (Tolman-Oppenheimer, TOV). The problem of the stability of relativis-

tic stars has a longstanding investigation through the literature, for example,

Zeldovich and Novikov (1978), Shapiro and Teukolsky (1984), Takatsuka and

Tamagaki (1993), Casalbuoni and Nardulli (2004), Khalilov (2002), Isayev

(2015), Chu et al. (2015).

In the present paper, we examine the stability of the relativistic polytrope

for different polytropic indices. An analytical solution to the TOV equation is

introduced which provided us with the physical parameters of the relativistic

polytrope. We investigated the critical values of the relativistic parameter

that the onset of the radial instability occurs. The structure of the paper is

as follows: section 2 is devoted to the formulation of the TOV equation. In

section 3 we give a brief description of the analytical method used to solve

the TOV equation. Section 4 deals with the obtained results. The conclusion

is outlined in section 5.

2. THE EQUATION OF HYDROSTATIC EQUILIBRIUM

The interior of the symmetric star can be described in a spherical coordi-

nate system (r, ϑ, φ) by the standard form of the metric (Tolman 1939, Landu

& Lifshitz 1962)

ds2 = eνc2dt2 − eλdr2 − r2dϑ2 − r2 sin2 ϑdφ2, (1)

where νand λ are functions of radius r. As for a fluid star, the components of

the energy momentum tensor corresponding to the above metric are given by

T 0
0 = ρc2eν , T 1

1 = Peλ, T 2
2 = Pr2, T 3

3 = Pr2 sin2 ϑ, (2)

whereρ, Pand c are the mass density, pressure, and speed of light respectively.

The time-independent gravitational equations for the line element Equation

(1) and the energy momentum tensor are

e−λ

(
1

r

dν

dr
+

1

r2

)
− 1

r2
=

8πG

c4
P, (3)

e−λ

(
1

r

dλ

dr
− 1

r2

)
+

1

r2
=

8πG

c4
ρc2, (4)

dP

dr
= −1

2
(P + ρc2)

dν

dr
, (5)

where G = 6.67 × 10−8g−1cm3s−2is the Newtonian gravitational constant.

Equations Equation (3), Equation (4), and Equation (5) together with the

equation of state ρ = ρ(P )represent the hydrostatic equilibrium for an isotropic
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general relativistic fluid sphere and can be solved to getλ,ν,P andρas functions

of r. For hydrostatic equilibrium stars, Tolman-Oppenheimer-Volkoff (TOV)

general relativity equation obtained by solving Einstein’s field equations has

the form

dP

dr
= −G ε(r) m(r)

c2 r2

[
1 +

P (r)

ε(r)

] [
1 +

4 πr3 P (r)

m(r) c2

] [
1− 2G m(r)

c2 r

]−1

, (6)

where

m(r) =

∫ r

0

4πρ(r)r2dr,

is the gravitational mass interior to radius r and ε(r)is the internal energy

density.

Equation (6) is an extension of the Newtonian formalism with relativistic

correction. The equation of state for a polytropic star isP = Kρ1+
1
n , where

n is the polytropic index. Tooper (1964) has shown that the TOV equation

together with the mass conservation equation has the form

ξ2
dθ

dξ

1− 2σ (n+ 1)υ/ξ

1 + σ θ
+ υ + σ ξ θ

dυ

dξ
= 0, (7)

and
dυ

dξ
= ξ2θn, (8)

with the initial conditions

θ(0) = 1, υ(0) = 0, (9)

where
θ = ρ/ρc, ξ = rA, υ = A3m(r)

4πρc
,

A =
(

4πGρc

σ(n+1)c2

)1/2

, σ = Pc

ρc c2 = Kρc
1/n

c2 ,
(10)

σ is the relativistic parameter can be related to the sound velocity in the

fluid, that is because the sound velocity is given by υs
2 = dP

dρ in an adiabatic

expression. In Equations (10) θ, ξ and υ are dimensionless parameters, while

A is a constant.

If the pressure is much smaller than the energy density at the center of a

star (i.e.σ tends to zero), then Equation (7) reduces to

ξ2
dθ

dξ
+ υ = 0. (11)

Equation (8) together with Equation (11) reproduces the well-known Lane-

Emden equation for Newtonian polytropic stars

1

ξ2
d

dξ

(
ξ2

dθ

dξ

)
+ θn = 0. (12)

When n tends to zero, we get the case of incompressible matter, for which

the analytic solutions are possible in both relativistic and nonrelativistic cases.

The nonrelativistic Lane-Emden equation has an analytical solution in a closed

form for only n = 0, 1and 5, however, this is not possible for relativistic

equation, and recourse must be had to numerical integration (Tooper 1964,

Bludman 1973, Ferrari et al. 2007).
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3. ANALYTICAL SOLUTIONS OF THE RELATIVISTIC EQUATIONS

Nouh (2004), Nouh and Saad (2013) introduced a new analytical solution

of Equations (7-8) and applying the Euler-Abel transformation (Demodovich

& Maron, 1973) and then Pade approximation to the Euler-Abel transformed

series (Appendix B) to accelerate the convergence of the power series solutions.

In this paper, we analyze the gravitational stability of polytropic fluid

spheres based on the analytical solution of TOV equations that have already

been given by Nouh and Saad (2013). We considered the cases of the poly-

tropic index n = 3.0, 2.5, 2.0, 1.5 and 1.0 forσ < n/(n+ 1).

The analytical solution has the form:

θ(ξ) = 1 +

∞∑
k=1

akξ
2k, (13)

where

ak+1=
σ

2(k+1) (2(n + 1) γk−1 − ηk − βk + σ ζk)− αk

2(k+1)(2k+3) , k ≥ 1,

γk−1 =
∑k−1

i=0 fi gk−i−1, ηk =
∑k

i=0 ai gk−i, βk =
∑k

i=0 ai αk−i, ζk =
∑k

i=0 ai βk−i,

fi = 2(i+ 1) ai+1, gi =
αi

(2i+3) , γk =
∑k

i=0 fi gk−i,

αk = 1
k a0

∑k
i=1(n i− k + i) ai αk−i, k ≥ 1, α0 = an0 , and a0 = 1.

(14)

From Equations (10), for some values of n, σ and ρc we can determine K, and

obtain the radiusRand the massM(R)from

R = A−1ξ1 =

[
c2

4πG
(n+ 1)σ(1−n)

(
K

c2

)n]1/2
ξ1, (15)

M =
4πρc
A3

ν(ξ1) =

[
1

4π

(
(n+ 1)c2

G

)3 (
K

c2

)n
]1/2

M̃, (16)

M̃ ≡ σ(3−n)/2 ν(ξ1), (17)

ξ1 is the first zero of the Lane-Emden function θ(ξ). Equation (8), can be

written in the form

υ(ξ1) =

∞∑
k=0

αk

(2k + 3)
ξ1

2k+3 . (18)

The power series solution, Equation (13), is converged rapidly for the poly-

tropic index n ≤ 2 and the order of error between analytical and numerical

solutions was of order 10−4. For n > 2, the series solution has utilized gives

slow convergence, and calculation of the stellar mass from Equations (16) and

(17) indicates an increase in error. The physical range for a convergent power

series can be extended with a change of the independent variable. Transfor-

mations by changing of the independent variable are utilized to improve and

accelerate the series convergence in Equation (18) for n > 2 (Pasucal 1977,

Saad 2004):

x = 6 ∗
{(

1 +
1

3
ξ2
)}1/2

. (19)
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4. RESULTS

The results evaluated by the usage of Equations in Section 3 are utilized

here to analyze the stability of relativistic polytropes for various values of the

general relativity σ and polytropic index n. The numerical results obtained

are tabulated in Appendix A for n = 1(0.5)to3.0 and a range value of σ.

Comparisons of the analytical solutions of Equation (1) and M̃(σ) to the

numerical method are given in Tables A1 to A5. While Table A6 shows the

critical values of M̃(σ) due to relativistic effects for different polytropic indices.

In Figures 1 to 5 we plot M̃ , Equation (17), as a function of the index n

and the relativistic effectσ. The figures show an increase of M̃(consequently

increase of the stellar mass M ) with σup to some maximum values (say,σCR).

It is worth mention that the critical value σCR marks the onset of the first

mode of radial instability. For the casen = 1.0, Fig. 1 shows that the critical

value σCR = 0.42 and the relativistic polytrope are stable for σ < 0.42. In

figures 2, 3, and 4 we observe critical values of the general relativity index

σCR = 0.2, σCR = 0.1 and σCR = 0.04 for the cases n = 1.5, n = 2.0 and

n = 2.5respectively. In Fig. 5 where n = 3.0, M̃ has a maximum at σCR = 0

which marks the onset of the first mode of instability, while the minimum

value at σCR = 0.53 marks the onset of the next mode of nonradial instability.

In this case, Equation (17) reduces to M̃ ≡ ν(ξ1). It is concluded that for

σCR > 0.5 the relativistic polytropic models are energetically unstable.

The study of the stability of polytropes is useful for determining some

physical properties such as the maximum mass limit and illustrates how the

stellar mass increases or decreases due to the effects of general relativity. For

a given mass, radius, and a polytropic index n, Fig. 6 of mass-radius relation

can determine the internal structure of a polytrope. This means each value

of a relativistic parameterσcorresponds to a certain internal structure. We

can see from Fig. 6 that one pair of mass and radius has two different val-

ues of σ. For the case of a polytropic index n=3.0, the logarithmic function

log10[σ (n+ 1)υ(ξ1)/ξ1)] = −2.03 has two values of σ ≃ 0.67 and σ ≃ 0.75.

Then we have two spherical polytropic configurations of the same mass and ra-

dius but different internal structures. When n = 2.0, the logarithmic function

log10[σ (n+ 1)υ(ξ1)/ξ1)] = −0.76 has two values of σ ≃ 0.42 and σ ≃ 0.47.

Such information reflects the importance of relativistic solutions.

Table 1, gives the limits of mass-radius; for example, if the polytropic

index n = 1.0GM
/
c2R ≤ 0.214, then the gravitational radius 2GM/c2 is

at most 43% of the invariant(physical) radiusR. When the polytropic index

n=3.0GM
/
c2R ≤ 0.072, then the gravitational radius 2GM/c2 is at most

14.5% of the invariant radius R, which is very small compared to the limit

value when n = 1.0.

The results of all critical values obtained in this paper for different poly-

tropic indices are in full agreement with those evaluated by several authors

such as Tooper(1964), Bludman(1973), and Araujo & Chirenti (2011). These

critical values σCR and M̃(σ) together with various indices n are given in

Table A6 (Appendix A). It is shown that the spherical polytrope of index
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0.4 0.42 0.44 0.46 0.48 0.5 0.52

0.249

0.2492

0.2494

0.2496

0.2498

0.25

M
~

-0.002

0

0.002

-0.003

-0.001

0.001

0.003

n=1.0

Fig. 1. M̃(σ) for n = 1, and σCR ≈ 0.42. Stable relativistic polytrope occurs for

σ < 0.42, while unstable models occur when σ > 0.42. Comparison of analytical

and numerical results provides errors of order 10−4.

n = 3.0 and σ > 0.5 is energetically unstable. The mass-radius relation

(Tooper 1964) has the form:

GM

c2R
=

σ (n+ 1)υ(ξ1)

ξ1
, (20)

where Rdefines the physical radius (invariant radius) of the sphere and ξ1 =

ARcan be obtained by integrating the Equation

ξ1 =

∫ ξ1

0

(1− 2σ (n+ 1)υ(ξ)/ξ)
−1/2

dξ. (21)
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0.1 0.2 0.3 0.4 0.5 0.6

0.23

0.24

0.25

0.26

0.27

0.28

0.29

M
~

-0.004

-0.002

0

0.002

0.004

n=1.5

Fig. 2. M̃(σ) for n = 1.5, and σCR ≈ 0.2. Stable relativistic polytrope occurs for

σ < 0.2, while unstable models occur when σ > 0.2. Comparison of analytical and

numerical results provides errors of order 10−5.

The mass-radius relation is useful for determining the surface redshift. It gives

the ratio of the gravitational radius 2GM/c2to the invariant radius R when

n and σ are known. Rewrite Equation (20) in terms of numerical values for

solar mass and solar radius and take logarithms of both sides of the resulting

equation (Tooper, 1964). Then using the solutions introduced in section 3, we

plotted the logarithmic ratio of gravitational radius to a geometrical radius as

a function of the relativistic parameter for different values of the polytropic

index n (see Fig. 6). Table 1 gives the limits of mass-radius relations for

different polytropic index n.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.2

0.24

0.28

0.32

0.36

0.4

0.44

M
~

-0.02

-0.01

0

0.01

0.02

-0.015

-0.005

0.005

0.015

n=2.0

Fig. 3. M̃(σ) for n = 2, and σCR ≈ 0.1. Stable relativistic polytrope occurs for

σ < 0.1, while unstable models occur when σ > 0.1. Comparison of analytical and

numerical results provides errors of order 10−4.

5. SERIES CONVERGENCE

The power series solution of the relativistic problem without using any

acceleration techniques is very limited. Tables 2, 3, and 4 show the radius

of convergence ξ1of the power series solution (1) of Equation (13) and the

relative error (ε) before performing any acceleration. When the polytropic

indices n = 1.0 and n = 1.5, the series is convergent rapidly. However,

beyond the mentioned values of the polytropic index, the power series solution

is either slowly convergent or divergent. It is noted that the relative error

(ε = |ξ1 (An) − ξ1 (Num)| /ξ1 (Num) ) increases gradually with increasing
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
~

-0.04

-0.02

0

0.02

0.04

n=2.5

Fig. 4. M̃(σ) for n = 2.5, and σCR ≈ 0.04. Stable relativistic polytrope occurs for

σ < 0.04, while unstable models occur when σ > 0.04. Comparison of analytical

and numerical results provides errors of order 10−4.

the polytropic effects σ and the polytropic index n as well. Which in turn

results in a small physical range of the convergent power series solutions.

Hence produces inaccurate physical parameters of the relativistic polytropes.

The fourth order Runge-Kutta method was used for the performance of the

numerical solution of the relativistic TOV equation. Analytical and numer-

ical calculations through this paper have been done using the Mathematica

package, version 11.2.

To extend the physical radii of the convergent power series solutions, a

combination of the two techniques for Euler-Abel transformation and Padé
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0 0.2 0.4 0.6 0.80.1 0.3 0.5 0.7

0.4

0.6

0.8

1

1.2

0.5

0.7

0.9

1.1

M
~

-0.04

-0.02

0

0.02

0.04n=3.0

Fig. 5. For n = 3.0, M̃ has a maximum at σCR = 0 which marks the onset of the

first mode of instability, while the minimum at σCR ≈ 0.53 marks the onset of the

next mode of nonradial instability. Comparison of analytical and numerical results

provides errors of order 10−3.

approximation Nouh(2004) and Nouh & Saad(2013) have been utilized. Ta-

bles from A1 to A5 (Appendix A) show comparisons between numerical and

analytical results. It is worth noting that the power series solutions are rapidly

convergent for the polytropic indices n = 1(0.5)3.0 and provide a maximum

relative error of order 10−3.
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TABLE 1

LIMITS OF MASS-RADIUS RELATIONS

n Max. value of log10[σ (n+ 1)υ(ξ1)
/
ξ1] Limit ratio of GM

/
c2R Limit ratio of GM

/
c2R

1.0 -0.670 0.214 0.277

1.5 -0.769 0.170 0.237

2.0 -0.885 0.130 0.174

2.5 -1.022 0.095 0.117

3.0 -1.201 0.0633 0.072

TABLE 2

RADII OF THE CONVERGENCE OF θ(ξ) AND RELATIVE ERROR

FOR n = 1.0

σ ξ1(N) ξ1(A) ε: relative error

0.1 2.5990 2.5990 0.0

0.2 2.2770 2.2765 0.000219635

0.3 2.0641 2.0637 0.000193827

0.4 1.9132 1.9111 0.001098844

0.5 1.8008 1.8862 0.045276217

TABLE 3

RADII OF THE CONVERGENCE OF θ(ξ) AND RELATIVE ERROR

FOR n = 1.5

σ ξ1(N) ξ1(A) ε: relative error

0.1 3.0384 3.0730 0.011259356

0.2 2.6993 2.6025 0.037195005

0.3 2.4930 2.4281 0.026728718

0.4 2.3610 2.2648 0.042476157

0.5 2.2749 2.0644 0.101966673

0.6 2.2192 1.8340 0.210032715
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Relativity parameter

-2.2
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g
1
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M
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R
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n=1.0
n=1.5

n=2.0

n=2.5

n=3.0

Fig. 6. The logarithmic ratio of the gravitational radius to the coordinate radius,

as a function of the relativistic parameter,σ, for different values of the polytropic

index n.

6. CONCLUSION

In the present paper, we considered the stability properties of the relativis-

tic polytrope. We analyze for various polytropic indices the stability of the

relativistic polytrope. An analytic solution is applied to the TOV equation

that provides us with relativistic polytropic physical parameters. For each

polytropic index, we tested the critical values of the relativistic parameter

at which the radial instability started. It is shown that for a given mass,

radius and a polytropic index n, the internal structure of a polytropic fluid

sphere can be determined as a function of the relativistic parameter σ. For

n = 1(0.5)2.5, stable relativistic polytropes occur for σ less than the crit-

ical values 0.42, 0.20, 0.10, and 0.04 respectively, while unstable relativistic

polytropes are obtained when the relativistic parameter σ is greater than the
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TABLE 4

RADII OF THE CONVERGENCE OF θ(ξ) AND RELATIVE ERROR

FOR n = 2.0

σ ξ1(N) ξ1(A) ε: relative error

0.1 3.6989 3.4259 0.07968709

0.2 3.3983 2.5632 0.325803683

0.3 3.2711 2.5577 0.278922469

0.4 3.2473 1.9503 0.665025893

0.5 3.2967 1.9836 0.661978221

0.6 3.3986 1.7686 0.92163293

0.67 3.4982 1.6556 1.112949988

same values. When n = 3.0 and σ > 0.5, energetically unstable solutions have

occurred.

Appendix A: Numerical Results

In the following tables, we listed the numerical results obtained for different

polytropic indices. The designation of the columns are as follows:

1. σ: is the relativistic parameter.

2. ξ1: is the first zero of the Emden function.

3. ν(ξ1)Num: is the numerical solution of the relativistic function.

4. ν(ξ1)An: is the analytical solution of the relativistic function.

5. M̃(σ)Num: is a parameter analog to the mass of the polytrope computed

numerically.

6. M̃(σ)An: is a parameter analog to the mass of the polytrope computed

analytically.

7. ∆ν(ξ1)Num: is the difference between the analytical and the numerical

values of the function.

8. ∆M̃(σ)An: is the difference between the analytical and the numerical

values.
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TABLE A1

COMPARISONS BETWEEN ANALYTICAL AND NUMERICAL

SOLUTIONS OF THE RELATIVISTIC FUNCTIONS (1) AND M̃(σ) FOR

n = 1.0.

σ ξ1 ν(ξ1)Num ν(ξ1)An M̃(σ)Num M̃(σ)An ∆ν(ξ1)Num ∆M̃(σ)An

0.0 3.1415 3.1416 3.1416 0.0 0.0 0.0 0.0

0.10 2.5990 1.7514 1.7514 0.1751 0.1751 0.0 0.0

0.12 2.5221 1.5922 1.5922 0.1911 0.1911 0.0 0.0

0.15 2.4198 1.3941 1.3941 0.2091 0.2091 0.0 0.0

0.17 2.3590 1.2834 1.2835 0.2182 0.2182 0.0001 0.0

0.20 2.2770 1.1426 1.1426 0.2285 0.2285 0.0 0.0

0.22 2.2278 1.0624 1.0624 0.2337 0.2337 0.0 0.0

0.25 2.1607 0.9585 0.9585 0.2396 0.2396 0.0 0.0

0.27 2.1200 0.8983 0.8981 0.2425 0.2425 0.0002 0.0

0.30 2.0641 0.8192 0.8190 0.2457 0.2457 0.0002 0.0

0.32 2.0299 0.7727 0.7728 0.2473 0.2473 -0.0001 0.0

0.35 1.9827 0.7109 0.7109 0.2488 0.2488 0.0 0.0

0.37 1.9536 0.6742 0.6742 0.2495 0.2495 0.0 0.0

0.40 1.9132 0.6249 0.6250 0.2500 0.2500 0.0001 0.0

0.42 1.8882 0.5954 0.5954 0.2501 0.2501 0.0 0.0

0.45 1.8531 0.5553 0.5554 0.2499 0.2499 0.0001 0.0

0.47 1.8314 0.5311 0.5310 0.2496 0.2496 0.0001 0.0

0.50 1.8008 0.4981 0.4981 0.2491 0.2491 0.0 0.0

9. σcritical: is the critical value of the fractional parameter at which insta-

bility started.

Appendix B: The Series Acceleration Technique

To accelerate the convergence of the series solution of Equation (13), we

followed the scheme developed by Nouh (2004). As the first step of this

scheme, the alternating series is accelerated by Euler–Abel transformation

(Demodovich and Maron, 1973).

Let us write

θ(ξ) = a0 + ξϕ(ξ), (22)

Where

ϕ(ξ) =

∞∑
k=0

akξ
k−1 =

∞∑
k=1

ak+1ξ
k, (23)

then

(1− ξ)ϕ(ξ) =

∞∑
k=0

ak+1ξ
k −

∞∑
k=1

akξ
k = a0 +

∞∑
k=0

∆akξ
k (24)
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TABLE A2

COMPARISONS BETWEEN ANALYTICAL AND NUMERICAL

SOLUTIONS OF THE RELATIVISTIC FUNCTIONS (1) AND M̃(σ) FOR

n = 1.5.

σ ξ1 ν(ξ1)Num ν(ξ1)An M̃(σ)Num M̃(σ)An ∆M̃(σ)An

0.0 3.6537 2.7141 2.7141 0.0 0.0 0.0

0.10 3.0384 1.4823 1.4822 0.263592 0.263569 2.3E-05

0.12 2.9552 1.3446 1.3446 0.274153 0.274151 2E-06

0.15 2.8464 1.1744 1.1741 0.283069 0.282987 8.2E-05

0.17 2.783 1.08 1.08 0.285922 0.285841 8.1E-05

0.20 2.6993 0.9602 0.9602 0.287166 0.287166 0.0

0.22 2.65 0.8925 0.8921 0.286706 0.286558 0.000148

0.25 2.5843 0.805 0.8049 0.284609 0.284568 4.1E-05

0.27 2.5453 0.7545 0.7543 0.282603 0.282524 7.9E-05

0.30 2.493 0.6881 0.6881 0.278913 0.278913 0.0

0.32 2.4619 0.6496 0.6494 0.27638 0.276292 8.8E-05

0.35 2.42 0.5982 0.5981 0.272214 0.272151 6.3E-05

0.37 2.3949 0.5678 0.5677 0.269366 0.269303 6.3E-05

0.40 2.361 0.5269 0.5269 0.265018 0.265018 0.0

0.42 2.3407 0.5026 0.5025 0.262221 0.262144 7.7E-05

0.45 2.3134 0.4696 0.4695 0.258014 0.25794 7.4E-05

0.47 2.297 0.4497 0.4496 0.25527 0.255216 5.4E-05

0.50 2.2749 0.4227 0.4227 0.251326 0.251326 0.0

0.52 2.2617 0.4061 0.4061 0.248669 0.248655 1.4E-05

0.55 2.2439 0.3835 0.3833 0.244906 0.244817 8.9E-05

0.57 2.2333 0.3696 0.3696 0.242484 0.242432 5.2E-05

0.60 2.2192 0.3504 0.3504 0.238846 0.238846 0.0
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TABLE A3

COMPARISONS BETWEEN ANALYTICAL AND NUMERICAL

SOLUTIONS OF THE RELATIVISTIC FUNCTIONS (1) AND M̃(σ) FOR

n = 2.0.

σ ξ1 ν(ξ1)Num ν(ξ1)An M̃(σ)Num M̃(σ)An ∆M̃(σ)An

0.0 4.3531 2.411 2.411 0.0 0.0 0.0

0.05 3.9617 1.7165 1.7162 0.3838 0.3838 0.0

0.07 3.8443 1.5258 1.5258 0.4037 0.4037 0.0

0.10 3.6989 1.2987 1.2983 0.4107 0.4106 0.0001

0.12 3.6191 1.1769 1.1766 0.4077 0.4076 0.0001

0.15 3.5198 1.0272 1.0274 0.3978 0.3979 -0.0001

0.17 3.4653 0.9445 0.9440 0.3894 0.3892 0.0002

0.20 3.3983 0.8403 0.8399 0.3758 0.3756 0.0002

0.22 3.3619 0.7814 0.7815 0.3665 0.3665 0.0

0.25 3.3186 0.7058 0.7056 0.3529 0.3528 0.0001

0.27 3.2962 0.6623 0.6622 0.3441 0.3441 0.0

0.30 3.2711 0.6055 0.6057 0.3316 0.3318 -0.0002

0.32 3.2595 0.5723 0.5725 0.3238 0.3239 -0.0001

0.35 3.2491 0.5285 0.5285 0.3127 0.3127 0.0

0.37 3.2463 0.5026 0.5024 0.3057 0.3056 0.0001

0.40 3.2473 0.4680 0.4678 0.2960 0.2959 0.0001

0.42 3.2526 0.4474 0.4478 0.2899 0.2902 -0.0003

0.45 3.2644 0.4195 0.4196 0.2814 0.2815 -0.0001

0.47 3.2754 0.4028 0.4030 0.2761 0.2763 -0.0002

0.50 3.2967 0.3800 0.3804 0.2687 0.2690 -0.0003

0.52 3.3128 0.3662 0.3668 0.2641 0.2645 -0.0004

0.55 3.3416 0.3474 0.3468 0.2576 0.2572 0.0004

0.57 3.3632 0.3359 0.3360 0.2536 0.2537 -0.0001

0.60 3.3986 0.3201 0.3202 0.2479 0.2481 -0.0002

0.62 3.4253 0.3104 0.3103 0.2444 0.2443 0.0001

0.65 3.4678 0.2970 0.2973 0.2394 0.2397 -0.0003

0.67 3.4982 0.2887 0.2891 0.2363 0.2366 -0.0003
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TABLE A4

COMPARISONS BETWEEN ANALYTICAL AND NUMERICAL

SOLUTIONS OF THE RELATIVISTIC FUNCTIONS (1) AND M̃(σ) FOR

n = 2.5.

σ ξ1 ν(ξ1)Num ν(ξ1)An M̃(σ)Num M̃(σ)An ∆M̃(σ)An

0.0 5.3552 2.1872 2.1872 0.0 0.0 0.0

0.01 5.2623 2.0281 2.0281 0.641341 0.641341 0.0

0.02 5.1793 1.88702 1.88702 0.709633 0.709632 0.0

0.03 5.1052 1.76134 1.76131 0.733034 0.7033021 1.3E-05

0.04 5.0393 1.648899 1.648930 0.737410 0.737424 -1.4E-05

0.05 4.9809 1.5479 1.548019 0.7320 0.732013 0.0

0.07 4.8841 1.3744 1.374359 0.7069 0.706927 0.0

0.10 4.7819 1.1692 1.169269 0.6575 0.657528 0.0

0.12 4.7383 1.0599 1.059908 0.6238 0.623826 0.0

0.15 4.7044 0.9261 0.925878 0.5764 0.576204 0.0002

0.17 4.7006 0.8527 0.852617 0.5475 0.547477 0.0

0.20 4.7206 0.7606 0.760086 0.5086 0.508299 0.0003

0.22 4.7498 0.7088 0.708902 0.4855 0.485503 0.0

0.25 4.8163 0.6426 0.642273 0.4544 0.454155 0.0002

0.27 4.8753 0.6048 0.605615 0.4359 0.436554 -0.0007

0.30 4.9855 0.5556 0.554771 0.4112 0.410576 0.0006

0.32 5.0734 0.5271 0.527703 0.3964 0.396896 0.0005

0.35 5.2273 0.4896 0.490730 0.3766 0.377450 -0.0009

0.37 5.3450 0.4677 0.466891 0.3648 0.364138 0.0007

0.40 5.5448 0.438571 0.444662 0.348782 0.348982 -0.0002

0.42 5.6943 0.4214 0.421721 0.3392 0.339499 -0.0003

0.45 5.9440 0.3984 0.397734 0.3263 0.325758 0.0005

0.47 6.1284 0.3847 0.384457 0.3186 0.318326 0.0003

0.50 6.4335 0.3664 0.366915 0.3081 0.308537 -0.0004

0.52 6.6569 0.3555 0.355406 0.3019 0.301804 0.0001

0.55 7.0239 0.3408 0.340363 0.2935 0.293112 0.0004

0.57 7.2910 0.3320 0.331352 0.2885 0.287911 0.0006

0.60 7.7273 0.3202 0.319843 0.2818 0.281497 0.0003

0.62 8.0423 0.3131 0.319070 0.277851 0.277888 -3.7E-05

0.65 8.5563 0.3036 0.305345 0.2726 0.274169 -0.0016

0.67 8.9257 0.2980 0.297274 0.2696 0.268953 -0.0006

0.70 9.5224 0.2905 0.291442 0.2657 0.266579 -0.0009

0.72 9.9494 0.2860 0.284817 0.2634 0.2623610 0.001
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TABLE A5

COMPARISONS BETWEEN ANALYTICAL AND NUMERICAL

SOLUTIONS OF THE RELATIVISTIC FUNCTIONS (1) AND M̃(σ) FOR

n = 3.0.

σ ξ1 ν(ξ1)Num ν(ξ1)An M̃(σ)Num M̃(σ)An ∆M̃(σ)An

0.0 6.8968 2.01824 2.01824 2.01824 2.01824 0.0

0.05 6.7074 1.42463 1.42463 1.42463 1.42463 0.0

0.07 6.7206 1.26543 1.26542 1.26543 1.26542 1.0E-05

0.10 6.8258 1.07845 1.07837 1.07845 1.07837 8.0E-05

0.12 6.9521 0.979601 0.979949 0.979601 0.979949 - 0.0003

0.15 7.2285 0.85958 0.859491 0.85958 0.859491 9.0E-05

0.17 7.4751 0.794229 0.793908 0.794229 0.793908 0.0003

0.20 7.9508 0.713042 0.713880 0.713042 0.713880 -0.0008

0.22 8.3481 0.667954 0.667963 0.667954 0.667963 -1.0E-05

0.25 9.0894 0.611096 0.612004 0.611096 0.612004 -0.0009

0.27 9.6994 0.579159 0.578934 0.579159 0.578934 0.0002

0.30 10.8327 0.538631 0.540522 0.538631 0.540522 -0.0018

0.32 11.7690 0.515833 0.519000 0.515833 0.519000 -0.003

0.35 13.5271 0.487068 0.488563 0.487068 0.488563 -0.001

0.37 15.0007 0.471124 0.470841 0.471124 0.470841 0.0003

0.40 17.8197 0.451585 0.452268 0.451585 0.452268 -0.0007

0.42 20.2306 0.441299 0.443341 0.441299 0.443341 -0.002

0.45 24.9438 0.429831 0.429350 0.429831 0.429350 0.0005

0.47 29.0538 0.424822 0.422867 0.424822 0.422867 0.0020

0.50 37.2058 0.421395 0.421807 0.421395 0.421807 -0.0004

0.53 48.5317 0.423168 0.418075 0.423168 0.418075 0.0051

0.60 91.0723 0.449319 0.453089 0.449319 0.453089 -0.004

0.70 162.5832 0.526621 0.529641 0.526621 0.529641 -0.003

0.74 177.9357 0.558153 0.554724 0.558153 0.554724 0.003

0.75 180.4379 0.565394 0.541169 0.565394 0.541169 0.0242
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TABLE A6

THE CRITICAL VALUES σCR CORRESPONDING M̃(σ) FOR VARIOUS

INDICES N .

n ξ1 σcritical M̃(σ)

1.0 1.8882 0.42 0.249930

1.5 2.6993 0.20 0.287166

2.0 3.6989 0.10 0.410546

2.5 5.0393 0.04 0.737424

3.0 6.8968 0.0 2.01824

3.0 48.5317 0.53 0.416203

where, ∆ak = ak+1 − ak, k = 0, 1, 2, ... are finite differences of the first order

of the coefficients ak. Applying the Euler-Abel transformation to the power

series
∑∞

k=0 ∆akξ
k, p times, and after some manipulations we obtain

∞∑
k=0

akξ
k =

∞∑
i=0

∆ia0
ξi

(1− ξ)i+1
+

(
ξ

1− ξ

)p ∞∑
k=0

∆pakξ
k, (25)

where ∆0a0 = a0. Equation (25) becomes meaningless when ξ = 1, so, by

setting ξ = −t, we obtain the Euler-Abel transformed series as

θEn(t) =

∞∑
k=0

∆ia0
ti

(1− t)i+1
+ (

t

1− t
)p

∞∑
k=0

∆p[(−1)kak]t
k. (26)

Returning to the earlier variable, ξ, we obtain

θEn(ξ) =

p−1∑
i=0

(−1)
i
∆ia0

ξi
(1 + ξ)i

+ (
ξ

1 + ξ
)p

∞∑
k=0

(−1)
k+p

[∆pak]ξk, (27)

where

∆pak = ∆p−1ak+1 −∆p−1ak.

Any order difference ∆pak, can be written as linear combination

∆pak =

p∑
i=0

(−1)p−i(
p

i
)ak+1

where

(
p

i
) =

p!

i!(p− i)!
.

The second step is to apply Pade
′
approximation to the Euler-Abel trans-

formed series, Equation (27).
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