Molecular lines from PPNe and young PNe : Recent studies of their structure and dynamics

V. Bujarrabal

Observatorio Astronómico Nacional, Spain

Quantitative, accurate results on structure, kinematics, temperature, density, ...

Example: ¹²CO, ¹³CO : Simple rotational ladder, simple excitation Easily populated by collisions (low A-coeff.)

low-Js (e.g. J=2-1, J=1-0; mm-waves) : Easy excitation, depends slightly on $T_{rot} \sim T_k$ We see most gas (in PPNe and young PNe) and can measure densities and total mass

higher-Js (e.g. J=6-5; sub-mm-waves) : more difficult to excite probe warm gas and line ratios give temperatures

POWERFUL INSTRUMENTS (ALMA) -> very high spectral and spatial resolutions Very accurate description of structure and kinematics over the whole nebula

Powerful instruments

1: Very high spectral resolution, limited in fact by sensitivity heterodyne technology

2: Very high spatial resolution0."3 at present, soon better than 0."1

3: High sensitivity enough in ALMOST ALL our cases (at least in the Galaxy)

each line tends to select regions not much hotter or cooler than $E_J(K)$!! low T: we do not populate the levels; high T: many other levels populated

Intense lines ($\tau \gtrsim 1$) : T_B(J \rightarrow J–1, K) \sim E_J(K) !! very general result, widely satisfied

state-of-the-art (well designed) instruments can map such a brightness !!

Systematic high-resolution observations of young PNe are feasible !!

$$\sigma(\mathsf{K}) \sim 10^2 \frac{\mathsf{T}_{\mathsf{sys}}(\mathsf{K}) \ \lambda(\mathsf{mm})^{2.5}}{\mathsf{A}(\mathsf{m}^2) \ \theta(\mathsf{arcsec})^2 \ \sqrt{\mathsf{N}(\mathsf{N}-1)} \ \sqrt{\Delta \mathsf{V}(\mathsf{km/s}) \ \mathsf{t}(\mathsf{sec})} \ \sqrt{\mathsf{N}_{\mathsf{pol}}}}$$

A : antenna surface ; N: number of antennas (assuming: app. efficiency = 0.5 ; efficiency of correlator + atm. decorrelation = 0.8)

Plateau de Bure (clever design with big antennas) (230 GHz, CO J=2-1; t = 8 h, θ = 0.5, T_{sys} = 200 K, Δ V = 1 km/s) σ (K) ~ 0.6 K (0.15 K for 1")

$$\begin{split} \mathsf{E}(\mathsf{CO},\mathsf{J=2}) &= 16 \ \mathsf{K} \ => \ \mathsf{T}_{\mathsf{mb}}(\mathsf{J=2-1}) \sim 10-20 \ \mathsf{K} \\ &=> \ \mathsf{S/N} \sim 25 \ \text{at} \ 0\rlap{.}^{\prime\prime}5 \ \text{res.} \quad (100 \ \text{at} \ 1^{\prime\prime}) \ !! \end{split}$$

Good maps, even for rare species or weaker sources, even with subexcited lines.

NOEMA (extended PdBI) : higher resolution with higher surface: will also work

Systematic high-resolution observations of young PNe are feasible !!

ALMA : High-resolution (as high as 0.01), high-sensitivity mapping 6 times more surface; higher frequency; better system; much better atmosphere higher brightness because of higher Js and more compact clumps

=> \sim S/N and efficiency as PdB, but HIGHER v and MUCH HIGHER RESOLUTION

not optimistic estimates, very probably they will do better

Herschel/HIFI observations of high-excitation molecular lines

High-spectral (but low-spatial) resolution in the FIR and sub-mm, up to CO J=17–16 -> study of warm components and measurement of temperature

general and detailed results derived : e.g. CRL 618 shows a particularly warm fast outflow: $T_k \gtrsim 200 \text{ K}$

see also atomic fine-structure (low-excitation) lines in poster by Santander-García et al.

Bujarrabal et al. (2010, A&A 521, L3; 2012, A&A, 537, A8), Soria-Ruiz et al. (2013, A&A 559, A45), etc

High-excitation molecular lines: Example of detailed analysis: NGC 7027

 (\mathbf{k})

T

 Ξ

 T_{mb}

 (\mathbf{K})

 (\mathbf{K})

T

 (\mathbf{K})

T

0 5

-50

ff 2

30

20

General structure of the nebula

Derived physical conditions

nebular components identified from profile components

Model fitting gives a very detailed and quantitative description of the nebula Shock effects (higher velocity and temp.) in the inner shell and axial blobs

OVRO systematic observations of post-AGB nebulae: OPACOS

wide OVRO survey of post-AGBs/PPNe in ¹²CO, ¹³CO, and C¹⁸O J=1–0 Moderate resolution: 2....2 - 10...7 mostly detections and statistical 27 objects, almost 90% detection, selected mostly from FIR colors

An outstanding case : IRAS 19374+2359

Enormous velocities and linear momentum (the largest known) $P \sim 45 \, M_\odot \, \text{km s}^{-1} / \sin(i) \quad \text{equivalent to} \sim 0.5 \, M_\odot \text{ at } 130 \, \text{km s}^{-1} \, !!$

OVRO systematic observations of post-AGB nebulae: OPACOS

Statistical results: not all PPNe are so spectacular

Many PPNe are very massive and show very fast outflows

but in most sampled objects $V_{outfl}\sim 20$ - 70 km s^{-1} (after correcting for random inclination)

and $M_{tot} \sim 0.05$ - 0.5 M_{\odot} (after correcting for ^{12}CO opacities)

we will see more extreme cases later pay attention to observational biases

COSAS: Systematic PdB observations of AGB and post-AGB objects

wide PdB survey of AGB and post-AGB nebulae J=1–0 and J=2–1

45 objects observed and reduced, 18 already published high quality maps, res. < 2'' (in J=2–1)

IRAS 19475+3119, bipolar PPNe, first group of data from COSAS

Castro-Carrizo et al. 2010, A&A, 523, 59

COSAS: AGB semirregular variables with axisymmetric CSEs: IRC+50049

A group of semiregular variables (X Her, RX Boo, IRC+50049, ...) show axial shells expanding at moderate velocity

Origin of asymmetry ?? systematic studies in progress

10

ALMA high quality data show mass loss between periods of enhanced rates

Phases of increased mass loss were known

Moderate-resolution high-sensitivity ALMA maps show low-brightness spiral envelope probably due to binarity (also seen in scattered light images of AGBs and PNe)

see more details in poster by W. Vlemmings, including variations of isotopic ratios in the shell

Maercker et al. 2012, Nature, 490, 232; Vlemmings et al. A&A, 556, L1

Bipolar nebula around a binary star. Molecular gas just occupies two equatorial rings

Molecule-rich gas is \sim 20% of the total nebula total mass just \sim 0.05 M_{\odot} dominated by the PDR (ionized gas represents < 10%)

Two short episodes of equatorial ejection during \sim 40 yr, separated by \sim 500 yr and with low velocities : 4 km s^{-1} and 8 km s^{-1}

High quality PdB maps, resolutions: 0.1 km s⁻¹, 0.75

Castro-Carrizo et al. 2012, A&A 545, 1

Expanding equatorial rings in M2–9, the Butterfly Nebula

The spatial and velocity centroids of the rings are not the same !

-4

-2

East offset (arc sec.)

North offset (arc sec.)

-2

70

75

Ejected in two different phases of the (primary) orbit The stellar velocity affects the velocity of the rings, their central position, and the gradients within the rings

New high-resolution observations of CO in CRL 618

Very complex structure of the fast outflows \sim cavity converging to \sim bow shock

Old OVRO observations revealed the general structure New SMA observations of 12 CO J=3–2, 0."3 resolution

Sánchez Contreras et al. (2004, ApJ, 617, 1142), Lee et al. (2013, ApJ, 777, 37)

High-resolution observations of lines of HCN and HC_3N in CRL 618

SMA maps of HCN and HC₃N (+ isotopes + vibr. exc.)

select efficiciently the nebula center \rightarrow accurate description of the phys. conditions and dynamics of the slow and dense inner core the expansion velocity decreases with time in very late AGB phases (or acceleration?) (inner 0."6 \cong 8 10¹⁵ cm \cong 200 yr)

The Boomerang Nebula:

The coldest region in the Universe? ALMA and SEST data

Double shell at moderate velocity

+ very extended and fast halo at very low temperature (< 2.7 K)

Rotating and expanding gas in low-mass post-AGB nebulae

Some post-AGB objects are known to show very low nebular mass (and weak CO) $\sim 0.01 \text{ M}_{\odot}$ including dust shells, molecule-rich shell, PDRs, and ionized gas the Red Rectangle, 89 Her, HR 4049, RV Tau variables, IRAS 19500-1709, ... (M 2–9?) $\sim 1/2$ show a significant NIR excess; all NIR-excess sources are (close) binaries

89 Her: NIR-excess post-AGB (1 kpc) strongest NIR-excess source in CO emission

CRL 2688: *standard* PPNe (D = 1.2 kpc) high mass, velocity, and momentum

AC Her: NIR-excess post-AGB (1.1 kpc) a good example of CO in a NIR-excess source

why there is an observational biass !!

Rotating and expanding gas in low-mass post-AGB nebulae: systematic CO observations

Practically al them (15/19 detected) show narrow profiles indicating a disk in rotation !!

Bujarrabal et al. (2013, A&A 557, 104; A&A 557, L11), see also poster

Rotating and expanding gas in low-mass post-AGB nebulae Results from CO lines

Source	disk mass	typical size		outflow mass	velocity	comments	
	${\sf M}_{\odot}$	"	cm	M⊙	${ m km}~{ m s}^{-1}$		
RV Tau	< 8 10 ⁻³	<0.5	<1.3 10 ¹⁶				
DY Ori	2 10 ⁻³	0.37	1.1 10 ¹⁶				low mass, 10^{-3} – 10^{-2} M $_{\odot}$
Red Rectangle	6 10 ⁻³	2	2.3 10 ¹⁶	10 ⁻³	3 – 13	PdB & ALMA maps	
U Mon	< 9 10 ⁻⁴	<0.4	< 5 10 ¹⁵				low velocity, 5–10 km s [–]
AI CMi	10 ⁻²	1.2	2.7 10 ¹⁶	$\sim 10^{-2}$	\sim 4	difficult est.	emall cizo
HR 4049	6.3 10 ⁻⁴	0.6	6 10 ¹⁵				Sinali Size
89 Her	1.4 10 ⁻²	1.5	2.3 10 ¹⁶	10 ⁻²	3 – 7	good PdB maps	
IRAS 18123+0511	4.7 10 ⁻²	0.6	3 10 ¹⁶	$\sim 10^{-2}$	\sim 15	difficult estimates	
AC Her	8.4 10 ⁻⁴	0.7	1.1 10 ¹⁶				which evolution ??
R Sct	\sim 7 10 $^{-3}$	~ 1	\sim 1.5 10^{16}	4 10 ⁻²	10	complex profile	resulting DNe 22
IRAS 19125+0343	10 ⁻²	1	2.3 10 ¹⁶	4 10 ⁻³	5 – 12	PdB maps	resulting File : :
IRAS 19157–0247	1.4 10 ⁻²	0.7	3 10 ¹⁶				
IRAS 20056+1834	\sim 2.5 10 $^{-2}$	\sim 0.6	\sim 1.7 10 16	\sim 7 10 $^{-2}$	\sim 10	complex profiles	
R Sge	< 9 10 ⁻³	<0.3	<7 1015				
IRAS 08544–4431	$\sim 7.7~10^{-3}$	2.2	1.8 10 ¹⁶	\sim 2 10 $^{-3}$	\sim 5	from ¹² CO data	
IW Car	\sim 5.3 10 $^{-3}$	1.3	2 10 ¹⁶			from ¹² CO data	maps exist for 3 sources
HD 95767	\sim 1.2 10 $^{-3}$	0.6	1.3 10 ¹⁶			from ¹² CO data	
HD 108015	\sim 2.3 10 $^{-2}$	1.2	3 10 ¹⁶			from ¹² CO data	

High-quality ALMA maps of the Red Rectangle ¹²CO and ¹³CO J=3–2 (0.8 mm)

both rotation and expansion ! rotational equatorial disk + expanding gas between equator and X-shaped nebula High resolution and sensitivity

outflow almost not det. in ¹³CO

High-quality ALMA maps of the Red Rectangle ¹²CO J=6–5 (0.4 mm)

0"25 arcsec resolution ! high exc. line (\gtrsim 100 K) -> T_k

Challenging observations – excellent maps, high resolution and S/N

High-quality ALMA maps of the Red Rectangle preliminary modeling of ¹²CO J=3–2

structure, density, & velocity $T_k \sim 200 \text{ K}; \text{ rotation not displayed}$

Moderate mass, velocity, and momentum

We interpret: material from the disk entrained by interaction with the axial fast jets => short disk lifetime, 1000 - 3000 years (for RedRect, 89 Her, and IRAS 19125) We speculate: these results basically apply to all sources of this kind