Millimeter emission from "Water Fountain" evolved stars

IAA-CSIC:

M. C. Durán-Rojas J. F. Gómez M. C. Osorio G. Anglada J. R. Rizzo (INTA-CSIC, Spain) O. Suárez (CNRS-OCA, France) L. F. Miranda (CSIC & Univ. of Vigo, Spain) P. D'Alessio (CRyA-UNAM, México) N. Calvet (U. Michigan, USA)

Water Fountains

(d)

R.A. offset (arcsec)

- They are in a stage between AGB to PN, the exceptions are: a late AGB (W43A; *Imai et al. 2002*), a Young - PN (IRAS 15103-5754; *Suárez et al. 2009; 2013*)
- came from low to intermediate-mass stars $(0.8 8 \, M_{\odot})$
- show large (100-500 AU) and bipolar collimated jets.
- H₂O maser emision shows large velocities $(\gtrsim 100 \text{km s}^{-1}; G \delta mez \text{ et al. 2011})$

- · So far 14 WF candidates are known to date.
- Difficult to image, in the Optical and IR wavelenghts, due to their thick envelopes, but

· Optical images

(Lagadec et al. 2011)

APN-VI, Cancún, México

November, 2013

Motivation

- ♦ Gas & dust emission mapping @ mm/sub-mm would provide a direct determination of the circumstellar material.
- Modeling of the Spectral Energy Distribution (SED) from IR to mm allows us to determine (or constrain) important physical parameters such as: central star luminosity, circumstellar masses, and distances.
- Scarce continuum data @ mm/sub-mm for WF (except for IRAS 16342-3814 Ladjal et al. 2010; Guertler et al. 1996). Observed but not detected: IRAS 18043-2116 (Imai et a.12012); IRAS 18286-0959 (Imai et al. 2009); IRAS 18460-0151 & IRAS 19134+2131 (Sanchez Contreras & Sahai 2012)
- We modified models of the envelope and disk around young stellar objects (*Kenyon, Calvet & Hartmann 1993*; D'Alessio et al. 2003) in order to use them to fit the SED of WFs.

Previous Modeling

+ WF: IRAS 16342-3814 (*Murakawa & Izumiura*, 2012) \rightarrow multiple components: R_{inner disk} = 200 AU, R_{torus} = 1000 AU, R_{bipolar lobes} = 5000 AU and R_{env} = 12000 AU.

+ Another example of evolved star is the proto-PN IRAS 22036+5306 (*Sahai, et al.* 2006) \rightarrow Modeled as separated Black Bodies: Total spectra: $T_{cool\ env} \sim 67K$, $T_{warm\ env} \sim 145K$, $T_{hot\ inner\ disk} \sim 1000K$, $T_{large\&cold\ grains} \sim 50K$

Millimeter Observations

We observed 11 of the 14 WF candidates to date

Source	$S_{ m 249GHz}~({ m mJy})$	$S_{93 m GHz}$ (mJy)	$S_{99 m GHz} ({ m mJy})$
IRAS 15445-5449		$5.9{\pm}2.3$	6.9±2.4
IRAS 15544-5332		< 0.14	< 0.08
IRAS 16342-3814		7.5 ± 2.3	$8.1{\pm}2.5$
IRAS 16552-3050	19±3	$0.53 {\pm} 0.24$	$0.6{\pm}0.4$
IRAS 18043-2116	21 ± 10		
OH 12.8 - 0.90	12 ± 6		
IRAS 18286-0959*	62 ± 9		
W43A	$350{\pm}50$	9 ± 3	$13.0 {\pm} 0.4$
IRAS 18460-0151*	24 ± 5		
IRAS 18596+0315	16±4		
IRAS 19134+2131*	$6.9{\pm}2.1$	•••	•••

+ IRAM 30-meter telescope: 1.2mm (249 GHz)

* Annual parallax distance. Kinematic distance.

+ ATCA - Australia Telescope Compact Array: 3.3mm (93 GHz), 3.0mm (99 GHz)

Spectral Energy Distribution

- 2MASS, Denis, MSX, Spitzer, WISE, IRAS, Akari, APEX, IRAM, ATCA, and ISO spectroscopy.
- · Our main aim is to model the spectra from 3 μ m to mm wavelenght range
- · We do not pretend to model the SED below 3 μ m due to scattering.

APN-VI, Cancún, México

Model: Envelope

APN-VI, Cancún, México

Model: Envelope + Disk

• We adapted flared passive disk (*D'Alessio et al. 2001; 2006*) with $R_{disk} = 750 \text{ AU}$

· Dust grain mixture includes silicates & graphites of millimeter size

Durán-Rojas et al. in prep.

APN-VI, Cancún, México

November, 2013

Identifier	L _*	i	$M_{\rm env}$	$M_{\rm disk}$	$M_{\rm tot}$	D
	(L _☉)	(degree)	(M_{\odot})	(M_{\odot})	(M_{\odot})	
IRAS 15445-5449	6000	50	0.8	2.1	2.9	3.5
IRAS 15544-5332	1000	30	1.1		1.1	4.0
IRAS 16342-3814	6000	30	1.8	1.9	3.7	2.0
IRAS 16552-3050	3000	30	1.5	2.4	3.9	6.0*
IRAS 18043-2116	3000	30	1.5	2.4	3.9	6.4
OH 12.8 - 0 .90	10000	30	0.5	1.6	2.1	8.0
IIRAS 18286-0959*	7500	30	0.5	1.9	2.4	3.6
W43A	6000	30	2.8	1.9	4.7	2.6
IRAS 18460-0151*	1000	40	0.3	0.2	0.5	2.1
IRAS 18596+0315	3000	50	1.5	1.8	3.3	4.6*
IRAS 19134+2131*	6000	40	0.8	1.9	2.7	8.0

Obtained parameters of the modeled Water Fountains

$$\begin{split} \mathbf{M}_{\mathrm{tot}} &= M_{\mathrm{env}} + M_{\mathrm{disk}} \\ \mathbf{R}_{\mathrm{env}} &= & 10000 \ \mathrm{AU} \\ \mathbf{R}_{\mathrm{disk}} &= & 750 \ \mathrm{AU} \end{split}$$

Parameters strongly depend on distance

* Annual parallax distance * The shortest kinematic distance

Durán-Rojas et al. in prep.

Conclusions

- We were able to fit the Spectral Energy Distribution (SED) of the WFs from NIR to mm wavelengths using an expanding envelope and a circumstellar disk.
- We obtained that the central star luminosity of the WFs are in the range of $10^3 10^4 L_{\odot}$.
- The mass of the envelope ($R_{env} = 10000 \text{ AU}$): $0.3 M_{\odot} \le M_{env} \le 2.8 M_{\odot}$.
- In order to fit the mm data a massive disk is requiered ($R_{disk} = 750 \text{ AU}$): $0.5 M_{\odot} \le M_{disk} \le 2.5 M_{\odot}$.

It suggests that \implies relatively massive progenitors.

• The modeling and the obtained parameters strongly depend on distance and in some cases the fit enable us to derive the distance.