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High-field magnetic white dwarfs (HFMWD): BWD ⇠ 106 � 109 G

If the formation of HFMWDs is independent of binary 
evolution...

... then the fraction of HFMWDs in single stars 
should be the same as in binary systems.
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Kepler et al. 2013

SDSS DR7 Sample SDSS identified ~1,200 detached 
WD + M dwarf binaries

None are HMWDs

(see also Tout 08)
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Should we have found HFMWDs in 
binaries?

Within 20 pc, 109 WDs: 
20% have a main-sequence companion

Probability of obtaining samples this different from 
the same underlying population is: 5.7⇥ 10�10 6.2�or

(see also Tout 08)

Nordhaus et al. 2011



HFMWD:  no detached companion present.

non-magnetic WDs:  detached companion present.

Two options:

1.  Presence of detached, long-period companions prevents 
formation of HFMWD.

2.  Orbiting companions were present but were destroyed 
during formation of HFMWD.



Formation of high-field magnetic white dwarfs from common envelopes

Nordhaus et al. 2011 PNAS 108, 8 
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Collaborators:
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For shaping PNe see 
Reyes-Ruiz & Lopez 
2001
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Important Points:

B-field amplification at convective-radiative boundary with 
downward diffusion not sufficient. 

Companion disrupts; hypercritical accretion initially.

Fields amplify in disk, accrete onto WD surface, survive through 
termination of the AGB phase.

Important Caveats:

How long does the disk survive?

Hydrogen-rich material deposited in He-burning layer could 
trigger thermonuclear runaway.
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