The first synchrotron jet resolved towards a post-AGB star.

Andrés Felipe Pérez-Sánchez.¹ W. Vlemmings. ², D. Tafoya.^{2,3}, J. Chapman.⁴

¹Argelander Institute for Astronomy, University of Bonn.

²Chalmers University of Technology, Onsala Space Observatory.

³CryA, UNAM.

⁴CSIRO Astronomy and Space Science, Australia Telescope National Facility.

8/11/13, Playa del carmen.

IRAS 15445-5449	Radio continuum observations	Results	Model	Conclusions

2 Radio continuum observations

Deacon et al. 2007

IRAS 15445-5449

- Near kinematic distance: 7.1 kpc.
- OH maser emission. Irregular line profile.
- High-velocity H₂O maser emission.
- Radio continuum emission.

Ω Argelander-Institut für Astronomie

Model

Conclusions

Mid-Infrared (Lagadec et. al. 2011)

Figure: Pérez-Sánchez et al. (2011).

Figure: Radio-continuum 0.8 GHz. Murphy et al. 2007

Results

Model

Previous radio continuum emission

Figure: Bains. et al. 2009

New radio continuum observations, 2012.

- 12-h observation run using the 6A ATCA array configuration (extended configuration).
- 2 GHz bandwidth at 22.0, 9.0, 5.0 and 2.2 GHz.
- Reduction and calibration of the data done using MIRIAD.

22 GHz radio-continuum emission.

Pérez-Sánchez et al. 2013.

Argelander-Institut für Astronomie

universitätbonn 🔊 🖸

IRAS 15445-5449	Radio continuum observations	Results	Model	Conclusions

- Previous observations:
 - 1998/1999 observations $\rightarrow \alpha = -0.85 \pm 0.05$ (Deacon et al. 2007)
 - 2005 observations $\rightarrow \alpha = -0.34 \pm 0.24$ (Bains et al. 2009)
- Our new observation yield a spectral index $\alpha = -0.56$ between 5.0 GHz and 22 GHz.

Synchrotron Radiation

Model

Conclusions

Synchrotron emission

Relativistic electrons

- Source of the electrons
 - Ionization by the star radiation field? Radiative transfer $T_{\star} = 12000$ K (Bains et al. 2009)...
 - Strong shocks (J-shocks)

Strong magnetic field

Fermi shock acceleration

 $\begin{array}{l} R = 1000 \; {\rm AU} \\ r = 500 \; \; {\rm AU} \\ T_e = 6000 \; {\rm K} \\ n_e = 3.5 {\times} 10^4 \; {\rm cm}^{-3} \end{array}$

Figure: Pérez-Sánchez et al. (2013)

Analysis of the results

Spectral index

• $\alpha = -0.63 \pm 0.01$

Energy equipartition $U = U_E + U_B$

Mimimum B-field

 $B_{min} = 5.43 (D/7.1 \rm kpc)^{-2/7} \ \rm mG$

Minimum Energy

 $E_{min} = 4.75 \times 10^{43} (D/7.1 \rm kpc)^{3/7} \ \rm erg$

B-field at $R_{\star} = 2$ au $B_{\phi} \approx 18.3 (D/7.1 \text{kpc})$ G.

Figure: Pérez-Sánchez et al. (2013)

Assuming that

- Synchrotron emission remained nearly constant betweem 1998 and 2012.
- Increase of the emission measure by a factor of 3
 - ... increase of the electron density by a factor of 2 in 7 yr.
- The rapid initial increase of the emission measure implies the jet.

Results

Model

Conclusions

Conclusions

- The resolved synchrotron emission is consistent with the bipolar morphology observed at the IR.
- Minimum-energy calculated for the jet is within the typical range the E_k measured from observations of molecular outflows (10⁴² - 10⁴⁶ erg, Bujarrabal et al 2001).

IRAS 15445-5449	Radio continuum observations	Results	Model	Conclusions

- The jet is collimated by a large scale magnetic field.
- The jet is shaping the CSE of IRAS 15445-5449.
- Source of the magnetic field?
 - Not known... yet
- Launching mechanism?
 - Not known.... yet
- Water fountains would have the conditions to produce synchrotron emission...
 - More observations are required to prove it.

