Outflows from Binary AGB stars with ALMA

Collaborators:

M. Maercker, W. Vlemmings, S. Mohamed, H. Olofsson, C. Paladini, A. Pérez-Sánchez, M. Leal-Ferreira, A. Mayer, R. Montez, E. Lagadec et al.

APN VI

Outline

- AGB stars ABC
- AGB ALMA observations
- New results: ¹²CO/¹³CO-ratio
- Summary

APN VI

AGB stars - ABC

- Final nuclear burning stage of low- to intermediate mass stars
- Produce a lot of carbon (¹²C), nitrogen, and also some heavier elements
- Produce a lot of dust

APN VI

AGB stars - ABC

- Have intense winds (<30 km/s, <10⁻⁴ M_{sun}/yr)
- Chemical evolution driven by thermal-pulse cycle (born-again PN) and dredge-up
- Three main chemical (evolutionary?) types: M (C/O<1), S (C/O≈1), C (C/O>1)
- Few known binaries

In Cycle 0: R Sculptoris

- ^{12,13}CO(3–2) observations with ALMA in Cycle 0
- Aim to study the detached shell
- Isotopologue ratios
- Unknown binary discovered

¹²CO observations of R Scl:

From Maercker et al. 2012

APN VI

5/11-13

In Cycle 0: R Sculptoris

Present-day v_{exp} =10.5 km/s consistent with orbital period of 350 days.

The shell:

- R_{sh} =18.5" and v_{sh} =14.5 km/s
- Shell age t < 1800 yrs
- Pulse duration: 345 yrs
- Pulse mass-loss rate: 7x10⁻⁶
- Present-day mass-loss rate: 3x10⁻⁷

¹²CO observations of R Scl:

0.30

APN VI

b 20

In Cycle 1 – The small binary sample

- ^{12,13}CO(3–2) observations with ALMA in Cycle 1
- Sample (A. Mayer's talk): R Aqr (20 AU), Mira (60 AU), W Aql (100 AU) π¹ Gru (400 AU+?)
- Constrain binary interaction (see Shazrene Mohamed's talk) Aim to construct a reference sample
- CO isotopologue ratios

APN VI

In Cycle 1 – The small binary sample

- ^{12,13}CO(3–2) observations with ALMA in Cycle 1
- Sample (A. Mayer's talk): R Aqr (20 AU), Mira (60 AU), W Aql (100 AU) π¹ Gru (400 AU+?)
- Constrain binary interaction (see Shazrene Mohamed's talk) Aim to construct a reference sample
- CO isotopologue ratios

Sofia Ramstedt

APN VI

The ¹²C/¹³C ratio

- Isotopic ratios are crucial to constrain evolutionary models
- Constrained by observations of ¹²CO and ¹³CO
- Mostly observed for nearby carbon stars

The ¹²C/¹³C ratio

- Isotopic ratios are crucial to constrain evolutionary models
- Constrained by observations of ¹²CO and ¹³CO
- Mostly observed for nearby carbon stars

The ¹²C/¹³C ratio – Two studies

Large sample, semi-detailed

- 60 stars
- All chemical types
- Constrains evolution
- Constrains nucleosynthesis
- Binary fraction unknown
- Average ratio across CSE

ALMA Small sample, super-detailed

- 5 binary stars (only R Scl so far)
- All chemical types
- Resolved CSE
- Constrains nucleosynthesis
- Difficult to disentangle
- Difficult to draw general conclusions

APN VI

5/11-13

The ¹²C/¹³C ratio – The large sample

¹²CO/¹³CO-ratio vs. dM/dt:

- Low-transition (up to J=6-5), single-dish observations
- Detailed radiative transfer:
 - 1. Dust
 - 2. ¹²CO
 - 3. ¹³CO

Results:

- Dependence on C/O
 - M-type C/O<1
 S-type C/O=1
 carbon stars C/O>1

From Ramstedt & Olofsson 2014

The ¹²C/¹³C ratio – The large sample

5/11-13

¹²CO/¹³CO-ratio vs. dM/dt:

- Low-transition (up to J=6-5), single-dish observations
- Detailed radiative transfer:
 - 1. Dust
 - 2. ¹²CO
 - 3. ¹³CO

Results:

APN VI

- Dependence on C/O
 - M-type C/O<1
 S-type C/O=1
 carbon stars C/O>1

From Ramstedt & Olofsson 2014

The ${}^{12}C/{}^{13}C$ ratio – The large sample

¹²CO/¹³CO-ratio distribution (with PNs):

 Dependence on C/O 0.5 M-type, C/O < 1carbon stars, C/O > 1 S-type different from 0.45 S-type, C/O=1 PNs M-type 0.4 ol sources PN values are ≈10-20 \bullet traction 0.25 0.2 From Palla et al. 2000 0.15 & Balser et al. 2002 0.1 0.05 Λ 80 20 40 60 100 $^{12}CO/^{13}CO$ 5/11-13 APN VI Sofia Ramstedt

APN VI

The ${}^{12}C/{}^{13}C$ ratio – The detailed study: R Scl

¹³CO observations of R Scl:

5/11-13

Summary

- Four known binary AGB stars will be observed with ALMA in Cycle 1 to constrain the gravitational effects on the wind and attain resolved isotopologue ratios.
- > We have estimated ${}^{12}C/{}^{13}C$ -ratios in a large mixed sample of AGB stars and find that the results support the evolutionary sequence $M \rightarrow S \rightarrow C$
- The shell around R Scl is likely formed during a thermal pulse but the isotopologue ratios across the CSE are affected by external processes and not only influenced by the normal evolution of the star. Maybe isotopic ratios can be used to find binary companions?

To be continued... Thanks!

APN VI

5/11-13