

FACULTY OF SCIENCE Institute for Astronomy and Astrophysics

Stellar Evolution in Real Time: The Exciting Star of the Stingray Nebula Nicole Reindl

Nov 7, 2013

APN VI

History of SAO 244567

- ~1950: weak emission-type star with weak – moderate Hα emission, (Henize 1976)
- 1971: Spectral classification based on optical spectrum (only Hβ relatively strong in emission) and UBV colors:

→ B-type supergiant with $T_{\rm eff}$ = 21 000 K

 Optical spectra (1990,1992), IUE spectra (from 1992 on), narrow-band HST imaging (1992):

SAO 244567 has turned into a CSPN within 20 years!

Parthasarathy 1995

- SAO 244567 was observed with various telescopes.
- Flux level seems to decrease continuously from 1988 to 1997.
- P-Cygni profiles became weaker with time
- Change of ionization equilibria
- Until now: No quantitative analysis of CS spectra

All available, reliably flux-calibrated observations of SAO 244567.

TMAP (Tübingen NLTE Model-Atmosphere Package, Werner et al. 2003), plane-parallel, metal-line blanketed, radiative and hydrostatic equilibrium

→ effective temperature, surface gravity, abundances

• Comparison with evolutionary tracks in the log $g - \log T_{eff}$ diagram

→ mass, luminosity

- PoWR (Potsdam Wolf-Rayet model-atmosphere code)
 - → mass-loss rate, terminal wind velocity, effective temperature, surface gravity
- Modeling the ISM line spectrum with owens (M. Lemoine, FUSE French Team)

- H+He models for a coarse determination of $T_{\rm eff}$, log g and the H/He ratio using the He II lines in the STIS and FOS spectra
- H+He+C models: T_{eff} determination using ionization equilibrium of C III / C IV, determination of C abundance (FOS, STIS, FUSE)
- Other ionization equilibria found in the FUSE spectra: N III / N IV, O III / O IV, and S IV / S V / S VI
- Determination of the N, O, Ne, Mg, Si, P, S, Fe, and Ni abundances

6

PoWR Analysis

- Element abundances from the TMAP analysis, mass and luminosity from evolutionary tracks
- Calculation of a grid, varying T_{eff} , \dot{M} , V_{∞}
- Comparison to the observed P-Cygni profiles of N v and C IV (IUE spectra), and O vI (FUSE)

Comparison of our best-fit models (red) with the IUE spectra (gray)

PoWR Analysis

Comparison of our best-fit models (red: pure stellar spectrum, blue: stellar+ISM spectrum) with the observed O VI P-Cygni profiles in the FUSE spectra (gray).

Results

Element abundances

Element abundances of the CS (red squares) and its PN (black stars)

8 N. Reindl: The Central Star of the Stingray Nebula APN6, November 2013

- Increase of T_{eff} about 40 kK within 30 years only!
- Mass-loss rate dropped continuously from $10^{-9.0}$ in 1988 to $10^{-11.6}$ M $_{\odot}$ /yr in 2006
- Mass-loss rate in 1988 in agreement with what is predicted by radiativedriven wind theory (Vink & Cassisi 2002)
- Terminal wind velocity increased continuously from $v_{\infty} = 1800$ km/s in 1988 to $v_{\infty} = 2800$ km/s in 2006
- Consistent with the contraction of the star (increase of log g)

Results

Element abundances

Element abundances of the CS (red squares) and its PN (black stars)

10 N. Reindl: The Central Star of the Stingray Nebula APN6, Nov

Distance

Using the flux calibration of Heber et al. (1984), we found

$$d = 1.6 \text{ kpc}, z = 0.3 \text{ kpc}, R_{PN} = 0.01 \text{ pc}$$

Using an expansion velocity of 8.4 km/s (Arkhipova et al. 2013) the kinematic age of the PN is about 1000 years

Evolutionary Status

Determination of the mass in the log g - log \mathcal{T}_{eff} diagram

12 N. Reindl:

The Central Star of the Stingray Nebula

Low-mass post-AGB star?

 \rightarrow Normally, only post-AGB stars are expected to form a PN

→ Time scales
correspond to a 0.87 M_☉
star considering
canonical post-AGB
evolution (Blöcker et al.
1995)

The Central Star of the Stingray Nebula

Evolutionary Status

Late thermal pulse object?

→ Evolutionary time scales of (very) late thermal pulse objects (V605 Aql, V4334 Sgr, FG Sge) are of the order of decades

 \rightarrow No sequences for low-mass stars exist

Sketch of a LTP sequence for SAO 244567 (Miller Bertolami, priv. comm.)

The Central Star of the Stingray Nebula

- Post-RGB star?
- → Hall et al. (2013): low-mass (M > 0.3 M_{\odot}) post-RGB can be CSPNe after a common-envelope ejection ₄

→ Evolutionary time scales do not fit

 → higher mass-loss rate and if the remnant is in thermal non-equilibrium after the common-envelope ejection might increase the evolutionary speed

The Central Star of the Stingray Nebula

- From our analysis, we found SAO 244567 must be low-mass, maybe even an AGB-manqué star
- None of the existing evolutionary models can explain the photospheric properties of this star
- The fast evolution of SAO 244567 gives us the unique possibility to study stellar evolution in real time
- The derived parameters establish constraints for stellar evolutionary theory

Paper has been submitted to A&A in Dezember 2013