Formation and X-ray emission from Hot Bubbles in Planetary Nebulae

Jesús A. Toalá

S. Jane Arthur

APN VI / Playa del Carmen 2013

Formation and X-ray emission from Hot Bubbles in Planetary Nebulae

Introduction

A simple view of Planetary Nebulae (PNe) formation INTERACTING STELLAR WINDS (ISW) scenario

Kwok + (1978) Balick (1987)

AGB = asymptotic giant branch WD= white dwarf

Observations

Kastner + (2012) CHANPLANS *Chandra*

- All PNe with d<1.5 kpc
- X-ray emission from 70 %
 - Diffuse
 - WD
 - Both

Observations

Diffuse X-ray emission

Observations

Diffuse X-ray emission

Hot gas T ~ 10⁶ K

Shocked gas inside PNe should have

 $T \sim 10^7 - 10^8 \ K$

as (Dyson & Williams 1997)

 $\mathbf{T} \sim \mathbf{V}_{\infty}^{2}$

Shocked gas inside PNe should have

 $T \sim 10^7 - 10^8 \ K$

as (Dyson & Williams 1997)

 $T \sim V_{\infty}^{2}$

In high contrast with the observed values

Steffen + (2008)

- 1D radiative-hydrodynamic simulations
- Detailed treatment on thes stellar wind parameters

THERMAL CONDUCTION

Steffen + (2008)

- 1D radiative-hydrodynamic simulations
- Detailed treatment on the stellar wind parameters

Steffen + (2008)

- 1D radiative-hydrodynamic simulations
- Detailed treatment on the stellar wind parameters

No realistic results are achieved if Thermal Conduction is not included.

Our work: Toalá & Arthur in prep.

2D radiative-hydrodynamic simulations

Our work: Toalá & Arthur in prep.

2D radiative-hydrodynamic simulations

INSTABILITIES in Hot Bubbles

- Velocity (WD)
- Density profile (AGB)
- Radiation field

Some examples...

Hubble Images

Vassiliadis & Wood (1993,1994) For AGB and WD phases

WM-Basic code (Pauldrach + 2012, and references therein)

14

12

10

8

6

4

2

0

0

Velocity [x10³ km s⁻¹]

1.5

2. .5

3

10

Time [x10³yr]

5

15

20

.5

Results: 1.5 M_o

Thermal Conduction

Synthetic X-ray Emission

CHIANTI database

Synthetic X-ray Emission

CHIANTI database

1.5 M_☉ L_x [0.3 – 2 keV]

 $1.5 \ M_{\odot}$ L_X [0.3 – 2 keV]

Conclusions/Comments

- 2D radiative-hydrodynamic simulations develop instabilities able to include mass in the hot bubble, reducing the temperature of the hot gas.
- Instabilities 'define' the early configuration of the ionized material
- Models without thermal conduction achieve to explain naturally the X-ray emission of some PNe.
- IF magnetic fields are important hydrodynamical instabilities should be important (NGC 40).

Montez + (2005)

GRACIAS – THANK YOU

Hot Bubble Formation: 1 M_o

Hot Bubble Formation: $1 M_{\odot}$

Hot Bubble Formation: $1 M_{\odot}$

