

THE GALAXY HALO-CONNECTION: SCALING RELATIONS

B. Mancillas-Vaquera¹ and V. Avila-Reese² ¹LERMA, CNRS UMR 8112, l'Observatoire de Paris, France ² Institute of Astronomy-UNAM, México

OBJETIVE

Mapping the stellar-to-halo mass relation in the scaling relations

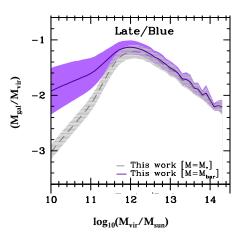
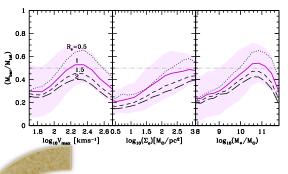
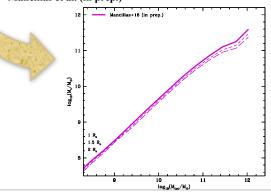


Figure 2. Stellar-to-halo (gray line and shaded area) and baryonic-to-halo (purpure line and shaded are) mass relations for the two galaxy populations and the density-weighted average of them.


Rodriguez-Puebla et al. (2014) Calette et al. (2015)

METHODS

The mock catalog


The static model: A disk in centrifugal equilibrium is inserted in a ACDM halo (Mo et al. 1998), including generalized **adiabatic invariance** (Gnedin et al. 2004), secular **bulge formation** and gas transformation into stars (Toomre criterion).

Generation of a disk galaxy catalog: We generate a total of 40,000 mock galaxies following a uniform halo mass distributions in bins of 0.1 dex in $log_{10}M_h$ in the mass range 10^{10} to 10^{14} M_{\odot}. For each halo mass bin, we assign the input parameters λ , *C*, f_{bar} , by taking them randomly from their corresponding distributions and we perform 1000 extractions. For each M_h and the set of initial conditions taking from their corresponding distributions, we apply the static model of disk galaxies in centrifugal equilibrium inside Λ CDM halos.

RESULTS

rigure 7. Baryon-to-total mass ratio at a given radius, M_{bal}/M_{tot} , of the semi-empirical galaxies as a function of V_{max} , Σ_e and M_* . The solid lines and shaded areas are for measures of this ratio at 1 R_e (the means and the standard deviations, respectively). The dashed lines, from top to bottom, are the means of the M_{bar}/M_{tot} ratio measured at 0.5, 1.5 and 2.5 R_e, respectively. **Mancillas et al. (in prep.)**

