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follow the non-CG relation, this test reinforces the presence of
fundamental differences in the Re–M⋆ between the two popula-
tions, even over a fixed range in M∗. The statistical significance
of these differences is perhaps underestimated by inadequacies
of the simple linear fit we have adopted. It is not able to cap-
ture the behavior that can be seen visually in Figure 6, namely,
a deviation from a linear form driven by a modest fraction
of all-CGs.

We wish to isolate this fraction of CGs with potentially large
outer components. We use the Re,dSer–M∗,deV relation in the
bottom right panel of Figure 6 to identify those galaxies located
at >1σ from the average relation determined by combining all-
CGs and non-CGs together. A total of 23 all-CGs are flagged as
outliers, representing the 13% of the population. In Section 6 we
will examine whether this population is peculiar in other ways.
We note that there are two non-CGs that are offset at high mass
as well. We visually inspected the non-CGs and found that they
are really characterized by an outer envelope, probably the result
of a recent merger. In one case it is due to the presence of a close
companion. Therefore, outer components might associated with
non-CGs as well, or there might be a mis-identification of some
non-CGs which are actually CGs.

In the case of the de Vaucouleurs quantities, we compare
our results to those presented in Hyde & Bernardi (2009) and
Bernardi (2009). The former considered early-type galaxies in
the local universe in all environments, while the latter explored
a sample of cluster CGs in the local universe. They both used
the same size profile and IMF as we do. Hyde & Bernardi
(2009) give both a linear fit and a quadratic one, Bernardi (2009)
analyzed two slightly different cluster CG samples and probed
a smaller mass range than we do (log M⋆/M⊙ ∼ 11–12). Here
we report all of their results. We note that these relations have
been computed using circularized sizes, so they are not directly
comparable to ours. In any case they provide us with a baseline
comparison to results from the local universe. We see that the
Re,deV–M∗,deV relation in COSMOS is compatible with the Hyde
& Bernardi (2009) fits for early-type galaxies. In contrast, the fit
determined by Bernardi (2009) for local cluster CGs is steeper
than what we find here. This suggests evolution in the scaling
relation (see also Trujillo et al. 2004; McIntosh et al. 2005),
which we explore in more detail below.

4.1.2. Velocity Dispersion–Stellar Mass Relation

Next, we examine the relation between stellar mass and veloc-
ity dispersion, shown in Figure 7. Of the three scaling relation
variables (Re, M∗, and σ ), the velocity dispersion is likely the
least sensitive to material in potential outer components because
it is a luminosity-weighted quantity and therefore dominated
by the galaxy’s center. Furthermore, we have applied (minor)
corrections to derive estimates for σ within (Re/8), making it
further representative of just the center. Given the results of the
previous section, which demonstrated the similarity between
CGs and non-CGs in observables more sensitive to the inner
regions, we would therefore expect the σ–M∗ relation for CGs
and non-CGs to be nearly identical.

Restricting our analysis to those galaxies with a measured
velocity dispersion, Figure 7 shows the result agrees with our
expectations. The σ–M∗ relation is virtually independent of the
profile adopted17 and so we show only the de Vaucouleurs case.
COSMOS CGs and non-CGs are characterized by very similar

17 The correction of the velocity dispersion to the standard central velocity
dispersion depends only weakly on the effective radius (see Section 2.4.1)

Figure 7. σ–M⋆ relation for CGs (green circles) and non-CGs (black triangles)
for the spectroscopic COSMOS sample. Lines and symbols are as in the upper
panel of Figure 6.
(A color version of this figure is available in the online journal.)

relations, with CGs simply occupying the statistical extreme of
the general population.

Not surprisingly, the parameters of a linear fit to the σ–M⋆

relation are in agreement within the errors for the two pop-
ulations, both when slopes are free and when they are fixed.
Parameters are also compatible with the relation obtained by
Hyde & Bernardi (2009). Deviations might be observed at low
masses, but the number of galaxies with log M⋆/M⊙ < 10.8 is
small in our sample. In contrast, the results for cluster CGs pre-
sented in Bernardi (2009) are significantly different, indicating
a potential flattening of the σ–M∗ relation for CGs with time
that we explore further below.

4.1.3. Size–Velocity Dispersion Relation

Finally, we turn to a comparison of sizes and velocity
dispersions, a scaling relation that relates an observable that can
be sensitive to an outer component (Re) to one that is expected
to be almost entirely defined by the inner regions (σ ). Two
versions of this relation are shown in Figure 8. The left panel
uses Re,deV and the right panel, Re,dSer. In both cases, we see
more scatter than in the previous relations, but also a much
larger separation between group CGs and non-CGs. At any
given velocity dispersion, CGs are systematically larger than
non-CGs by a factor of ∼1.5. When the double Sérsic profile is
adopted, differences between CGs and non-CGs are even more
striking with some CG outliers significantly above the non-CG
population. This result can be interpreted as a more extreme
version of the bottom right panel of the size–mass relation
(Figure 6) which compared Re,dSer to M∗,deV. Here we expect
σ to be even less affected than M∗,deV by light at large radii.
Galaxies with significant outer components should therefore be
even more distinct in the Re,dSer–σ relation.

We note that when the de Vaucouleurs profile is considered
(left panel of Figure 8), the non-CG sample shows a hint of
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