

International Centre for Radio Astronomy Research

ISM and dynamical scaling relations in the local Universe

Luca Cortese

International Centre for Radio Astronomy Research The University of Western Australia

THE UNIVERSITY OF WESTERN AUSTRALIA

ISM scaling relations - ALFALFA/GASS/COLDGASS/HRS

Define `normalcy' in galaxy population: constraints to theory

Insights into physical link between ISM and integrated galaxy properties \rightarrow when it comes to cold gas, M* is not the king

Unique tools to discriminate between nature and nurture → statistical evidence for fast and direct gas stripping from pairs to clusters

Dynamical scaling relations - SAMI

IFS surveys: investigate scaling relations for all galaxy types at once \rightarrow M*-angular momentum - spin/morphology plane: a possible way to unify galaxies

Global HI-H₂-dust scaling relations

ISM scaling relations and galaxy models

ISM scaling relations and environment

Total Gas/Dust

HI/Dust

 $H_2/Dust$

LC+ 2016a

Total G/D ratio varies very little between field and cluster

HI and H₂ behave differently: HI/Dust decreases - H₂/Dust increases

Stripping: CO<Dust<HI

Current Challenges

Identify `physically-driven' relations

Most of the comparison with theory (as well as environmental studies) based on relation with stellar mass

Isn't this just "bigger galaxies have more gas/dust"? Remember nice plot by Kennicutt 1990

Extend ISM environmental studies outside clusters

Virgo/Coma-like systems extremely rare. Impossible to extrapolate these studies to groups/pairs.

Number statistics our main limitation! Representative samples limited to \sim 300 (H₂/dust) - \sim 1000 (HI) galaxies

For HI we can make progress now

The power of stacking and ALFALFA HI observations

- extract HI spectra at known coords, z
- align in velocity, coadd & measure

Commonly used for cosmic HI density (Lah+ 2007, 2009; Rhee+ 2013) Even more powerful in the context of gas scaling relations (Fabello+ 2011, 2012; Brown+ 2015)

Primary vs secondary dependencies

Dissecting gas scaling relations with ~25000 galaxies

NUV-r bins

Brown, Catinella, LC+ 2015

Gas content primarily related with color/SSFR, not stellar mass

Stellar mass is not the king

LOW MASS, SF

Brown, Catinella, LC+ 2015

The gas fraction-M* slope mainly a consequence of galaxy bimodality

Not the best observational constraint to theoretical models

Tracing HI stripping across environments

Satellite galaxies binned by halo mass

Brown, Catinella, LC+ in prep.

ICRAR

Gradual decrease of gas content with group size: i.e., no threshold

Reduction of gas fraction also at fixed SSFR HI removed faster than SF quenched! => stripping!

Summary (I)

ISM scaling relations

When it comes to cold gas, M* is not the king

Statistical evidence for fast and direct gas stripping from pairs to clusters

Challenges

Need large number statistics to do this with detections. H₂ and dust studies (in the local Universe) suffering the most

Dynamical scaling relations for galaxies of all types

Tully-Fisher (1977) relation Pure disks

Faber-Jackson (1976) relation Spheroids

Dynamical scaling relations for galaxies of all types

Tully-Fisher (1977) relation Pure disks

Faber-Jackson (1976) relation Spheroids

Average galaxy is neither a pure disk or spheroid

Mass-Specific Angular momentum-Morphology plane

Obreschkow & Glazebrook 2014

Galaxies distributed along a M*-j relation Scatter related to morphology - i.e., balance between random and ordered motions

The SAMI Galaxy Survey

- •IFU survey of ~3400 nearby galaxies (2800 field/groups - 600 clusters)
- •SAMI instrument at AAT (12 gal/obs.)
- •Selection by M*(10^{7.5}-10^{11.5} M $_{\odot}$) and z (${\lesssim}0.1$)
- •Kinematics for both gas and stars!
- >1750 galaxies already observed

See http://sami-survey.org for details and first DR!

Stellar spin to trace morphology

Specific angular momentum

The scatter of M*-j* relation correlates with morphology

Gives us info on the balance between ordered and random motions

Note: this is just within $I r_e!$

Stellar spin to trace morphology

Specific angular momentum

The SAMI view of the M*-j*-n plane

LC+ 2016b

We can look at all this as a plane linking Mass - morphology - angular momentum (scatter <0.1dex)

Spin correlated with morphology but relation not linear!

Kinematical classification better separates rotation-vs-dispersion in bulge-dominated systems

 $j \propto \lambda_R M_*^a \longrightarrow M_* \propto [R(V^2 + \sigma^2)^{0.5}]^{1/a}$

Projection of the plane that minimises scatter

 $j \propto \lambda_R M *^a \longrightarrow M * \propto [R(V^2 + \sigma^2)^{0.5}]^{1/a}$

Different dynamical scaling relations as projections of M-j-spin plane

Combining contributions of random and ordered motions key for unified scaling relation including all galaxy types

Scatter (0.1dex) similar to pruned TF and FJ relations

Summary (II)

Dynamical scaling relations - SAMI

Critical to move beyond pre-pruning by morphology, SF, etc.

IFS surveys: investigate scaling relations for all galaxy types at once

- \rightarrow the M^{*}-angular momentum spin/morphology plane possible way to unify galaxies
- \rightarrow TF/FJ/S0.5 relations can be seen as different projection of the same plane
- Chance to move towards a more physically motivated morphological classification

Challenges

Current IFS studies mainly limited to I re... need to go to larger radii We should also look at baryonic dynamical scaling relations: need HI!

Thank you