How Environment Affects Galaxy Metallicity: Lessons from the Illustris Simulation

> Genel 2016, ApJ in press (arXiv:1602.02773)

> Shy Genel Hubble Fellow Columbia University

Motivation

- Z increases with M_* , decreases with SFR, independent of z (?)
- Used to constrain models, BUT: systematics!
- Motivations to look at other dependencies:
 - Weaker/different systematics
 - Constrain additional/different physical processes

Metallicity and environment -z=0 obs.

The role of cluster membership:

The role of environmental density:

Pasquali et al. 2012

Metallicity of satellites – simulations

- Illustris satellites have higher metallicities than centrals, at a given mass, by ≈0.1-0.15dex
- Found in other simulations too, but never explained

Metallicity evolution in Illustris

The metallicity of satellites increases at late times with very little increase in mass

Is this driven by the anti-correlation of metallicity & SFR?

Thick - centrals

Samples: definitions

• Define a control sample of centrals, selected to match the satellites in:

- Both mass and SFR
- Both at z=O and at infall time

Samples: the role of SFR history

• The metallicity difference between the 'matched satellites' and their 'controls' accounts for $\approx 2/3$ of the total difference between satellites and centrals \rightarrow differences in SFR history account for $\approx 1/3$ of the difference

Metallicity evolution in Illustris

The metallicity evolutions of the 'matched satellites' and their 'controls' diverge after infall time,

approx. by the 'required' ≈0.1dex,

in spite of almost identical SFR histories

Thin satellites with match in control Thick - control

Metallicity profiles in Illustris

This metallicity difference between the matched samples emerges only in the 'outer' part,

while in the inner part the matched samples have the same metallicities

Metallicity profiles in Illustris

- The local metallicity of the matched samples is essentially identical
- Can only be reconciled through a different weighting of different radii

SFR profiles in Illustris

• SFR profiles of satellites are more concentrated than those of centrals

• The metallicity differences tell us about the physics of star-formation in satellites

• Need data to compare to! (CALIFA? SAMI? MaNGA?)

A new definition of metallicity

• With a 'radially-averaged' metallicity, the gap between the metallicities of the 'matched satellites' and their 'controls' is almost closed

Metallicity and overdensity - Illustris

Conclusions

• Correlations between metallicity, galactocentric radius and environment provide independent constraints for models from the popular Z-M-z-SFR relations, and probe the physics of star-formation in satellites

• In Illustris, the difference between satellite and central galaxies in terms of the SFR profile dominates the difference in metallicities, due to different weighting of the metallicity gradient

- Weaker, 'local', metallicity differences are related to overall SFR history
- Predictions:
 - Radially-averaged metallicity differs less than SFR-weighted
 - Smaller differences when considering smaller apertures