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The r-process elements such as Au, Eu, and U are observed in the extremely metal-poor stars in the Milky Way halo and the Local Group dwartf
galaxies. However, the origin of r-process elements has not yet been identified. The abundance of r-process elements of stars in the Local Group
galaxies provides clues to clarify early evolutionary history of galaxies. It is important to understand the chemical evolution of the Local Group dwarf
galaxies which would be building blocks of the Milky Way. In this study, we perform a series of N-body/smoothed particle hydrodynamics simulations of
dwarf galaxies. We show that neutron star mergers can reproduce the observation of r-process elements. We find that the effects of gas mixing
processes including metals in the star-forming region of a typical scale of giant molecular clouds ~ 10 — 100 pc play significant roles in the early
chemical enrichment of dwarf galaxies. We also find that the star formation rate of ~ 10-3 Msun/yr in early epoch (< 1 Gyr) of galactic halo evolution is
necessary for these results. Our results suggest that neutron star mergers are a major site of r-process.
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