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ABSTRACT

Stellar masses of galaxies are frequently obtained via SPS fitting to observed 
photometry, or galaxy spectra. "State of the art" methods resolve spatial structures 
within a galaxy to asses the total stellar mass content. Current methods commonly 
deliver biased resolved spatial structures. In this work we will introduce a new 
algorithm, based on Bayesian statistics, aimed to mitigate the bias. We apply this 
algorithm to M51 and show the results.

1 INTRODUCTION

There are different methods to derive the mass of a galaxy, e.g., dynamical or lensing 
mass estimates (see Courteau et al., 2014, for a review). Regarding the stellar mass 
component, the use of stellar population synthesis (SPS) models (e.g. Bruzual & 
Charlot, 2003), as a mean to translate stellar light into mass (through the stellar mass-
to-light ratio), has been frequently advocated (e.g. Bell & de Jong, 2001; Bell et al., 
2003). Notwithstanding their common degeneracies, SPS models can asses reliable 
mass estimates in general.

One novel technique is the resolved stellar mass map method (Zibetti, Charlot, & 
Rix, 2009, ZCR henceforth), which delivers a map of the stellar mass surface density 
by photometric means. In principle, the method is truly powerful, since it can resolve 
not only for the mass, but also for other physical parameters of the SPS models, 
based solely on photometry. On the other hand, galaxy masses determined by 
unresolved means (where galaxies are treated as point sources) are often 
underestimated (or even overestimated for some objects, Roediger & Courteau, 
2015), thus the need for resolved structures (Zibetti, Charlot, & Rix, 2009; Sorba & 
Sawicki, 2015)

Despite its potential, which can also be extended to higher redshift studies, ZCR’s 
method produces biased spatial structures which contradict what we know of the 
evolution of galaxies in general (Martínez-García et al., 2016). The bias consists in a 
filamentary morphology for the stellar mass surface density, and an apparent spatial 
coincidence between the dust lanes and massive structures (see figure 1). The bias is 
due to a limited mass-to-light ratio accuracy (~0.1-0.15 dex), and SPS models 
degeneracies (Martínez-García et al. 2016).
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Fig 1.-
Panel a: Ks-band mosaic of M51. Display is in logarithmic scale.
Panel b: g-band (SDSS) mosaic of M51.
Panel c: M51’s stellar mass map based on (g − i) & (i − Ks) colors, and Ks mass-to-light-

ratio, by using the Zibetti, Charlot, & Rix (2009, ZCR) method.
Panel d: Dust lanes traced with the (g − Ks) color. Notice the resemblance between the 

structure and the "stellar mass" map produced by ZCR (panel c).

2 THE BAYESIAN SUCCESSIVE PRIORS (BSP) ALGORITHM

The Bayesian successive priors (BSP) algorithm is intended to correct the bias in 
ZCR's method. The idea is to use the prior information regarding the stellar surface 
mass density as deduced from the NIR bands. The massive older population of a 
galaxy is mainly traced by the NIR bands, specially the K-band (Rix & Rieke 1993).

The BSP algorithm consists of three iterations, which are described in what follows. 
The algorithm is intended to work with surface photometry, and a Montecarlo SPS 
library in three bands. The algorithm is applied on a pixel-by-pixel basis.

1. In the first iteration we use a uniform prior probability distribution. Then we 
identify all the pixels where the difference between the observed colors and the SPS 
library colors is less than 3-(figure 2, panel a). This guarantees that each pixel can 
be described by at least one template in our SPS library. Next we use the posterior 
NIR mass-to-light ratio from all pixels and calculate the statistical median.

2. In the second iteration, the median NIR mass-to-light ratio from iteration number 
1 is used as a constant parameter for the entire disk, together with a Gaussian prior 
probability distribution. Similarly to iteration number 1, we identify all the pixels 
where the difference between the observed colors and the SPS library colors is less 
than 1- (figure 2, panel b). These pixels will be the “backbone” of our mass map. 
The rest of the pixels belong mainly to relatively young luminous red stars, low 
surface brightness regions in the outskirts of the disk, and high extinction regions. 
For these pixels we used the information from the “backbone” pixels to interpolate 
the stellar mass surface density, and obtain new NIR mass-to-light ratios.

3. The third and last iteration is intended to deal only with the interpolated regions 
from iteration number 2. We apply a Gaussian prior probability distribution in Bayes' 
theorem, taking into account the new NIR mass-to-light ratios. We then obtain a free-
bias stellar mass surface density map (figure 2, panel c).

Fig 2.- Panel d: Residuals after subtracting a mass map that assumes a constant Ks mass-
to-light ratio, and the resulting mass map obtained from the BSP algorithm. Dark regions 
represent positive mass differences, and white regions negative differences.
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