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Introduction ure 3). At low-mass, dense gas is lifted above the galactic disk by stellar plumes. This dense gas is
then swept away by AGN bursts, resulting in powerful outflows with higher mass-loadings compared
to the stmulation with AGN feedback only. At intermediate mass, this positive non-linear coupling also
occurs, but so much dense gas from the stellar plumes 1s lifted inside the main outflow that cooling is
triggered, leading to a fraction of the gas actually falling back on the disk. For the high-mass galaxy,
lower resolution runs are still running, to determine the effect of AGN and stellar feedback separately
(Roos et al, in prep).

Galactic-scale outflows are ubiquitous in observations of star-forming galaxies, up to high redshift
(Steidel et al., 2010). Such outflows are mainly generated by internal sources of feedback: young stars,
supernovae and active galactic nuclei (AGNs). Still, the physical origins of such outflows are not well
understood, and their main driver is still debated. Up to now, most simulations take into account AGN
feedback or stellar feedback but not both, because both phenomena happen on very different spatial
and time scales. Most of them also still fail to reproduce all observed parameters from first principles.
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Figure 1 T1.me sequence of the low-mass star-forming galaxy with AGN and stelle.lr feedbac.k at .3 pc resolution, showing temperature threshold for star formation rate in the very center of the galaxy, leading to very small global star formation
the propagation of outflows. AGN feedback was enabled at 1.15 Myr. The AGN.1s the main driver of the outflow at all rate reduction (Roos et al., 2015).
masses and governs the temperature and density of the outflowing gas (Roos et al. in prep).
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With the POGO project, we run a Conclusions and forthcoming research
Name Resolution [pc]  Feedback suite of 15 simulations with three galaxy
M1 1.1 15.3 Stellar+ AGN masses, three spatial resolutions high We have run a series of simulations at very high resolution (from 6 to 1.5 pc) to study the coupling
9 ® 2
M1 stellar. L1 stellar 15 3 Stellar only enough to model the outflows from first between AGN and stellar feedback, identify the main driver of the outflows and investigate the impact
B , B * , L4 L4 . . . .
M1 AGN. L1 AGN 15.3 AGN only principles, and three feedback config- on star formation. Our main results are summerized as follows (Roos et al, in prep):
_ , L1 J, .
M2, 1.2 1.5, 3 Stellar+ AGN urations: thermal AGN feedback from e The AGN is the main driver of the galactic outflows at all masses;
Booth & Schaye (2009) ; thermal and . :
M2 stellar, L2 stellar 15,3 Stellar only . Y ’ . e Nonetheless, the mass-loading of the outflows highly depends on the presence of stellar outflows
M2 AGN. L2 AGN 15.3 AGN onl kinetic supernova feedback from Dubois
- » Lus - y o (0 . and on the mass of the host:
M3. L3, LL3 15 3. 6 Stellart AGN & Teyssier (2008) and young stars radia-
S _ : — at low mass, non-linear coupling between stellar and AGN feedback is positive and enhances the
tive feedback from Renaud et al. (2013) ; ping p
Table 1 The POGO simulations. The gas masses of sim- (hereafter, stellar) ; both simultaneously mass loading by. a factor of 4. ThlS. 11k§1y comes from the fact that dense gas 1s pushed up by
ulations 1, 2 and 3 are respectively 1.5, 4.9 and 11.5x 1010 M., (hereafter, stellar+AGN : see Table 1). stellar feedback just above the galactic disk, and then pushed much further by the AGN bursts;
Residual thermal supernova feedback is — at intermediate mass, non-linear coupling 1s still there but negative processes dominate: dense gas
maintained in the AGN configuration in order to keep a realistic probability density function (PDF) of from stellar feedback triggers cooling in the outflows, which decreases the mass-loading.
the gas in the interstellar medium (ISM). Accretion onto the BH 1s maintained 1n all runs: only AGN In a future paper, we will compute the long-range effects of AGN radiation as presented in Roos et al.
feedback (i.e.: re-injection of thermal energy in the cells surrounding the BH) is shut down in the stel- (2015) and present the impact of such winds on the star formation activity of the host.

lar configuration. The respective magnitudes of these feedback models are coherent with observations:
AGN feedback reproduces the Ly /Lip ~ 1073 from Mullaney et al. (2012) and 1s thus not artificially
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