

# Unveiling the sources of disk heating

in spiral galaxies with the **CALIFA** survey

#### Francesca Pinna

Instituto de Astrofísica de Canarias Universidad de la Laguna

fpinna@iac.es

2016 April, 13th



Francesca Pinna (IAC)

Disk Heating

#### The Work

PhD Thesis Instituto de Astrofísica de Canarias: with Jesús Falcón-Barroso (IAC)



#### Working group at the IAC

#### TRACES OF GALAXY FORMATION:

www.iac.es/proyecto/traces/



#### External collaboration









Francesca Pinna (IAC)

# The science goals

- ullet Constraining the SVE (Stellar Velocity Ellipsoid) for  $\gtrsim 50$  observed/simulated galaxies
  - Find the shape along the Hubble sequence

3 / 1

# The science goals

- Constraining the SVE (Stellar Velocity Ellipsoid) for ≥ 50 observed/simulated galaxies
  - Find the shape along the Hubble sequence

#### **SVE**

- velocity dispersion (σ)
   The statistical dispersion of velocities from the mean
- **SVE** Ellipsoid with semi-axes  $\sigma_r$ ,  $\sigma_\phi$ ,  $\sigma_z$



Velocity Ellipsoid. (Branham, 2004).

3 / 1

# The science goals

- Constraining the SVE (Stellar Velocity Ellipsoid)
   for ≥ 50 observed/simulated galaxies
  - Find the shape along the Hubble sequence

#### **SVE**

- velocity dispersion (σ)
   The statistical dispersion of velocities from the mean
- **SVE** Ellipsoid with semi-axes  $\sigma_r$ ,  $\sigma_\phi$ ,  $\sigma_z$



Velocity Ellipsoid. (Branham, 2004).

# Why?

Potential to unveil the **heating sources for the disk**:

- giant molecular clouds mergers → 3D agents (isotropic)
- spiral arms bars → planar agents (anisotropic)

# Previous works

- Gerssen J. & Shapiro K., 2012
   SVE as a function of Hubble types
  - 3D agents: early-types
  - radial agents: late-types



4 / 1

- The DiskMass Survey VI, 2013
  - "kinematic flaring of the disk"
  - possible scenarios:
    - an increase in the disk M/L
    - a flared disk
    - disk heating due to a massive DM halo disk heating due to a massive DM halo

# The sample:

#### observational data from CALIFA















#### 30 DISK GALAXIES

- ► Hubble types: from S0 to Scd
- ▶  $20^{\circ} < i < 70^{\circ}$
- $ightharpoonup R_{max} > 2R_{eff}$
- ►  $M_* > 10^9 M_{\odot}$ 
  - $n_{bins} > 100$







Velocity dispersion maps

# The sample: examples from CALIFA

# 

# The sample: examples from CALIFA



# The **sample**:

#### from simulations

- Technique in 2 steps (Martig et al. 2009, 2012)
  - 1) Extract merger and accretion history from large scale cosmological simulations
  - 2) Re-simulate a few halos at higher resolution (150 pc, a few 10<sup>6</sup> stellar particles per galaxy)
- Sample of 30 galaxies
  - $10^{10} \lesssim M_* \lesssim 10^{11}$
  - selected only on halo mass + in isolated environment











# The Thin Disk Model

#### Exponential Models for Velocity Dispersion

#### Velocity Dispersion in the line of sight

$$\sigma_{LOS}^2(r,\phi) = \sigma_r^2(r) \sin^2 \phi \sin^2 i + \sigma_\phi^2(r) \cos^2 \phi \sin^2 i + \sigma_z^2(r) \cos^2 i$$



# The Thin Disk Model

#### Exponential Models for Velocity Dispersion

### Velocity Dispersion in the line of sight

$$\sigma_{LOS}^2(r,\phi) = \sigma_r^2(r) \sin^2 \phi \sin^2 i + \sigma_\phi^2(r) \cos^2 \phi \sin^2 i + \sigma_z^2(r) \cos^2 i$$

Bulge(B)+Disk(D) model: for  $j = r, \phi, z$   $\sigma_i^2 = \sigma_{iB}^2 + \sigma_{iD}^2$ 

fitting the full radial range - MCMC method (emcee, python)

#### For the BULGE

$$\sigma_{r,B}(r) = \sigma_{r,0,B} e^{-r/h_{\sigma,r,B}}$$

$$\sigma_{\phi,B}^{2}(r) = \sigma_{r,B}^{2}(r) \frac{R_{b}^{2} + r^{2}/2}{R_{b}^{2} + r^{2}}$$

$$\sigma_{z,B}^{2}(r) = \sigma_{r,B}^{2}(r)(1 - \beta_{z,B})$$

#### For the DISK

$$\sigma_{r,D}(r) = \sigma_{r,0,D} e^{-r/\frac{h_{\sigma,r,D}}{h_{\sigma,r,D}}}$$

$$\sigma_{\phi,D}^{2}(r) = \sigma_{r,D}^{2}(r) \frac{R_{b}^{2} + r^{2}/2}{R_{b}^{2} + r^{2}}$$

$$\sigma_{z,D}^{2}(r) = \sigma_{r,D}^{2}(r)(1 - \beta_{z,D})$$



#### An early-type

# NGC7623 (S0)

$$\left(\frac{\sigma_z}{\sigma_r}\right)_{disk} \simeq 0.70 \, (-0.05, +0.06)$$

- SVE near isotropy ⇒ 3D agents
  - GMCs, Mergers
- Expected for early-types



#### A late-type



Francesca Pinna (IAC)

#### A simulated galaxy

An **Sb** from **simulations** 

$$\left(\frac{\sigma_z}{\sigma_r}\right)_{disk} \simeq 0.71 \, (\pm 0.01)$$

- Why the result is higher than what expected?
- What does this galaxy have in common with NGC7623?



A simulated galaxy

# The evolution history: mergers





# Discussion

• From simulations: *How mergers affect the SVE?* 



# Discussion

• Simulations + previous observations



# Discussion

• Simulations + previous observations + some CALIFA galaxies



#### Conclusions

- Velocity dispersions in galaxies outskirts are still uncharted waters
  - $oldsymbol{\circ}$   $\sigma$  measurements are not easy
  - Different/same Hubble types show much different σ profiles
     ⇒ different evolution histories

#### Conclusions

- Velocity dispersions in galaxies outskirts are still uncharted waters
  - $oldsymbol{\circ}$   $\sigma$  measurements are not easy
  - Different/same Hubble types show much different σ profiles
     ⇒ different evolution histories
- The SVE is a valid tool to make predictions about the disk evolution history
  - Early-types: more isotropic SVE
  - Late-types: less isotropic SVE
  - Mergers can break this tendency, especially for late-types

#### Conclusions

- Velocity dispersions in galaxies outskirts are still uncharted waters
  - ullet  $\sigma$  measurements are not easy
  - Different/same Hubble types show much different σ profiles
     ⇒ different evolution histories
- The SVE is a valid tool to make predictions about the disk evolution history
  - Early-types: more isotropic SVE
  - Late-types: less isotropic SVE
  - Mergers can break this tendency, especially for late-types
- Outlook
  - Extend the analysis to the 30 CALIFA galaxies
  - and in the future to a larger sample and deeper data (MaNGA, MUSE)

# Thank you for your attention