

NSCool User's guide

The Control Files

Dany Page

Instituto de Astronomía Universidad Nacional Autónoma de México

The Input Master File "Cool_*.in"

The master input file:

00 Cool Try.in 'NEW' BASIC MODEL FILES: 'EOS/Crust/Crust_EOS_Cat_HZD-NV.dat' 'EOS/v14/APR_EOS_Cat.dat' 'TOV/Profile/Prof_APR_Cat_1.4.dat' OTHER MODEL FILES: 'I_Files/I_Struct_1.6e14-4e11-1e10_normal.dat' 'I_Files/I_Bound_Fe.dat' 'I_Files/I_Pairing_SFB-a-T73.dat' 'I_Files/I_Neutrino_1.dat' 'I_Files/I_Conduct_21.dat' 'I_Files/I_Heat_0.dat' 'I_Files/I_Bfield_0.dat' 'I_Files/I_Accretion_0.dat' OUTPUT FILES: 'Model_1/I.dat' 'Model_1/Teff_Try.dat' 'Model_1/Temp_Try.dat' 'Model_1/Star_Try.dat' -:-- Cool_Try.in All (20,0) (Fundamental)

Its content is briefly described in the next slides. For more details see: NSCool_Guide_Control.

It is defined in NSCool.f with:

0	O NSCool.f	\bigcirc
C ***	Choose between two input: ************************************	0
C	Ask for the input file ************************************	0
	<pre>write(6,*) 'Input master file ='</pre>	
	read(5,*)filename	
C ***	Can add here the directory where "Cool_*.in" is:	- 11
с	filename='Model_1/'//filename	- 11
c ***	Or define it completely here: ***********************************	- 11
с	filename='Model_1/Cool_Try.in'	- 11
с	write(6.*)'Using as input: '.filename	
C*****	*******	
-	open(unit=15.file=filename.status='old')	
-: N	SCool f 14% (193.0) (Fortran)	1.1

If you're tired of typing in the directory, uncomment the

c filename='Model_1'//filename

Or, if you're always using the same input file (e.g., while debugging) use the second version (uncomment it, and comment out the first version)

The way it is presently working, NSCool will look for these files as they are defined in the input file. The way the files are defined in Cool_Try.in, since the subdirectories EOS, TOV, I_Files, Model_1, ..., are in the NSCool directory, one has to run NSCool from this directory (and not from the Code subdirectory). But if you define the files as, e.g., '../EOS/Crust/Crust_EOS_Cat_HZD-NV.dat', you can run from Code.

Wednesday, February 10, 2010

Control Files

The input file line by line (1)

O: This specifies how much info there is in the core EOS file. Its possible values are:
'old', 'new', 'NEW', 'QRK', and 'STR'.
Presently, only 'NEW' and 'STR' work properly !

- 'NEW' includes leptons, nucleons and hyperons.
- 'STR' is for strange stars with a thin baryonic crust.
- 'QRK' was as 'new' but with quark matter ("hybrid star"), allowing for a mixed phase. I think it is not anymore compatible with the present version of NSCool, but this should be easy to fix (by making an extension of 'NEW' instead of 'new').

3: contains the profile of the star as calculated by the TOV integrator. Since TOV is integrated by a Runge-Kutta scheme, during initialization a new grid is defined, by interpolations, more appropriate for NSCool.

• 'old' and 'new' may work, but this needs to be checked.

This terminology obviously reflects the evolution of NSCool with time !

1: the crust EOS and

2: the core EOS:they are used to define the "chemical composition" of the star, i.e., abundances of each type of particle, and nuclei in the crust, as well as Fermi momenta, effective masses, etc ... All this is performed during initialization.

Wednesday, February 10, 2010

NSCool: User's Guide

Control Files

The input file line by line (2)

4: contains parameters which define the grid used. I like to give files a name which is pretty indicative of its content. This name indicates that this specific file defines: $\rho_{crust-core} = 1.6 \cdot 10^{14} \text{ gm cm}^{-3}$, $\rho_{drip} = 4 \cdot 10^{11} \text{ gm cm}^{-3}$ and $\rho_b = 10^{10} \text{ gm cm}^{-3}$ (that is the "surface", i.e., the position of the outer boundary), and a "normal" size grid (about 100 grid points in the core and 250 in the crust).

5: defines the outer boundary condition, i.e., the envelope model glued at r_b .

(This particular file defines a heavy element envelope with iron at the surface.)

6: define which pairing gaps are used (for superfluidity/superconductivity).

7: allows some control to turn on or off some neutrino processes.

8: same thing, but for the thermal conductivity.

OTHER MODEL FILES: 'I_Files/I_Struct_1.6e14-4e11-1e10_normal.dat' 'I_Files/I_Bound_Fe.dat' 'I_Files/I_Pairing_SFB-a-T73.dat' 'I_Files/I_Neutrino_1.dat' 'I_Files/I_Neutrino_1.dat' 'I_Files/I_Conduct_21.dat' 'I_Files/I_Heat_0.dat' 'I_Files/I_Bfield_0.dat'	00	Coc	ol_Try.in	\bigcirc
	OTHER MODEL I_Files/I I_Files/I I_Files/I I_Files/I I_Files/I I_Files/I I_Files/I I_Files/I	FILES: _Struct_1.6e14- _Bound_Fe.dat' _Pairing_SFB-a- _Neutrino_1.dat _Conduct_21.dat _Heat_0.dat' _Bfield_0.dat' _Accretion_0.da	4e11-1e10_normal.dat' T73.dat' '	

- controls which heating mechanisms are used.
- **10:** controls magnetic field evolution: not implemented anymore !
- **11:** controls the accretion rate.

Notice that these last three files have names as I_*_0.dat: this indicates that these files define

- no heating,
- *no* magnetic field evolution (in this case there is no other option !) and
- *no* accretion.

The input file line by line (3)

12: contains some parameter which control the output: see next slide. [In this file are the parameters, among others, which determine whether the next three files are used or not.]

00	Co	ol_Try.in	\Box
OUTPUT FILES:	.,		ŕ
<pre>12 Model_1/1.dd 13 'Model_1/Teff 14 'Model 1/Temp</pre>	_Try.dat' _Try.dat'		n n
15 'Model_1/Star	Try.dat'		Ă
-:** Cool_Try.in	Bot (19,0)	(Fundamental)	Là
			1

13: output file: contains a few line of general info about the model and then one line per

time step:	000		🗋 Te	eff_Try.dat			0	
	Step	Time [years] 1.000E-12 2.500E-12 4.750E-12	Teff at inf [K] 1.135E+07 1.135E+07 1.135E+07	L_phot [erg/sec] 2.425E+37 2.425E+37 2.425E+37	L_nu [erg/sec] 4.382E+48 4.382E+48 4.382E+48	L_heat [erg/sec] 0.000E+00 0.000E+00 0.000E+00		This is the file to use to plot a cooling curve
	•	• • •	• • •	• • •	• • •	• • •	etc	

14: output file: contains the full T & L (and other variables) profiles at determined times [the times at which print out is done are given in the file "I.dat" **12**]

15: output file: contains the full profile of the star of time independent variables as r, ρ , P, T_c's, ...

Dany Page

Wednesday, February 10, 2010

Control Files

Output control: the "I.dat" file

 already described print of info about what N2 hints about it are at a stime step at which the is PTEFF =1: the output f PTEMP =1: the output f PTEMP =2: a HUG is generated. [More of 6: PSTAR =1: the output 7, 8, and 9: some integut print out more things 10: the calculation stoput value (in K). the calculation stoput value (in K). initial temperature (in Not used anymore [but kept here for backward] List of times, in years at which the full profil printed out in the file 	reviously. t out zillions of screenfull Scool is doing. Some the top of the file NSCool.f a debug print out will begin but file "Teff_*.dat" is use out file "Temp_*.dat" is use E output file "Temp_*.dat" on it somewhere else] ut file "Star_*.dat" is used. ters which can be used to a in "Teff_*.dat". os when T_e^{∞} drops below thi fin K) for the initial T profile. compatibility] , es will be "Temp_*.dat".	1 2 3 4 9 10 11	PRINT 0 1 0. 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	UT CONTROL: PSCREEN DEBUG ISTEP DEBUG PTEFF PTEMP PSTAR IDUMP1 IDUMP2 IDUMP3 TEMPMIN TEMPINI N SPECIFIC HEA ICVEL_NODEG VE MASS CONTRO EMNCO EMNCR EMP ROTATIONAL PE p0: initial s times at which	T in OUTER CRUST CONTRO DL: for old EOS, not use ERIOD:	L: d anymore es
Dany Page	NSCool: User's Guide		Con	trol Files		

Struct *.dat

- These parameters are used by subroutine grid (in file precool.f) to redefine the grid.
- Remember that \mathcal{T}_i is defined at i = 1, 3, 5, ..., imax and

 \mathcal{L}_i is defined at i = 0, 2, 4, ..., imax-1

- rhocore, rhodrip and rhosurf have obvious meaning and will define density at the grid points icore, idrip and imax.
- rhoenv (at grid point ienv) allows to extend the calculations to low density: the zone at densities between rhoenv and rhosurf will have their density adjusted during the cooling. If rhoenv < rhosurf then nothing happens (as in the sample file above).
- icore defines how many zones there will be in the core, located at radii which will give approximately the same volume in each zone.
- idec defines how many zones per decade in density there will be in the crust. [icore should be an odd number because \mathcal{T}_{icore} must be defined, and idec should be an even number because \mathcal{T}_{idrip} , \mathcal{T}_{ienv} , and \mathcal{T}_{imax} must be defined: however the code checks it and adjust icore/ienv]

Bound *.dat

These parameters are used by the function fteff (in the file boundary.f) and define the outer boundary condition, i.e., the " T_e - T_b " relationship. So: $T_e = T_e(T_b, ...)$ is fteff(Tb, ...) and both T_e and T_b are local temperatures, not red-shifted ones.

Choices of envelope models (1)

The envelope model being use is defined by the parameter:

$\mathbf{IFTEFF} =$

- **O** : uses a table, defined by the character string 'none-at-all.nut' (which should be replaced by the exact path and name of the table to use !). See the subroutine fteff_table for the format of the table.
- 1: uses the 'Te-Tb' relationship of:

Structure of neutron star envelopes *Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. I.* 1983, ApJ 272, p. 286 These are envelope models with iron.

2: uses the 'Te-Tb' relationship of:

Cooling of neutron stars - Effects of the finite time scale of thermal conduction *Nomoto, K.; Tsuruta, S.* 1987, ApJ 312, p. 711

These are envelope models with iron.

These two models are old, it is better to use the next one (IFTEFF=3);

Dany Page

Wednesday, February 10, 2010

NSCool: User's Guide

Control Files

Choices of envelope models (2)

IFTEFF =

3: uses the 'Te-Tb' relationship of:

Internal temperatures and cooling of neutron stars with accreted envelopes *Potekhin, A. Y.; Chabrier, G.; Yakovlev, D. G.*

1997, A&A 323, p.415

These are envelope models with light elements (and iron+heavier ones at high density). The amount of light elements is determined by the parameter η (= ETA in the file):

 $\eta = g_{s14}^2 \Delta M/M = P_{light} / 1.193 \times 10^{34} dyne cm^{-2}$

where Plight is the pressure at the bottom of the light element layer.

Notice that light elements cannot be present at too high densities (e.g., C will burn by pycnonuclear reactions at about 10^{10} g cm⁻³). So there is a maximum value that η can reach. The formula that Potekhin et al. give saturates when η grows: thus a value as η =1 will give the maximum possible effect of a light element envelope (even if it is physically a wildly unrealistic high value).

Dany Page

Choices of envelope models (3)

IFTEFF =

- **4** : more on it later !
- **5**: more on it later !
- 15: in this case the value of T_b is held constant: this can be used to simulate accreting neutron stars where the outer temperature is controlled by the accretion. The value of T_b is then given by the parameter TB_ACC0.

Pairing *.dat

Parameter controls:

SFN1S0	neutron ¹ S ₀ gap model to be used
SFN3P2	neutron ${}^{3}P_{2}$ gap model to be used
SFP1S0	proton ¹ S ₀ gap model to be used
SFL1S0	lambda hyperon (Λ) ¹ S ₀ gap model to be used
FN1SØ	scaling factor for neutron ¹ S ₀ gap
FN3P2	scaling factor for neutron ³ P ₂ gap
FP1S0	scaling factor for proton ¹ S ₀ gap
FL1S0	scaling factor for lambda hyperon (Λ) ¹ S ₀ gap
SFQUARK	quark gap (not safely implemented)

[The scaling factors allow to easily play with the sizes of the gaps: $T_c \rightarrow$ scaling factor × T_c]

Dany Page

nstituto de astronomí

Unam

Neutron ¹S₀ Gaps

Dany Page

NSCool: User's Guide

Control Files

Neutron ¹S₀ Gaps

The neutron ¹S₀ gap has been the most extensively studied to date. The curve "BCS" shows the prediction for the simplest model (in the "BCS approximation"). Models "SFB", "CCDK", & "WAP" go beyond this by including medium polarizations while "GC" & "GIPSF" use quantum Monte-Carlo techniques.

References:

- SFB: Schwenk, Friman, & Brown, Nucl. Phys. A713 (2003), p. 191.
- CCDK: Chen, Clark, Dave, & Khodel, Nucl. Phys. A555 (1993), p. 59.
- WAP: Wambach, Ainsworth, & Pines, Nucl. Phys. A555 (1993), p. 128.
- GC: Gezerlis, & Carlson, Phys. Rev. C77 (2008), p. 2801.
- GIPSF: Gondolfi, Iliaronov, Pederiva, Schmidt, & Fantoni, Phys. Rev. Lett. 111 (2008), p. 132501.
- 1ns, 2ns 3ns: ad hoc models proposed by
 - Yakovlev, Kaminker, & Gnedin, A&A 379 (2001), p. L5
 - Kaminker, Yakovlev, & Gnedin, A&A 383 (2002), p. 1076
 - Yakovlev, Kaminker, Haensel, & Gnedin, A&A 398 (2002), p. L24.

Neutron ³P₂ Gaps

Wednesday, February 10, 2010

NSCool: User's Guide

(See next slide for references)

Neutron ³P₂ Gaps

The neutron ³P₂ gap is the most important one, but it's actual value is essentially unknown (as the many curve in the previous slide easily convince you)

References:

- SFB: Schwenk, Friman, & Brown, Nucl. Phys. A713 (2003), p. 191.
- CCDK: Chen, Clark, Dave, & Khodel, Nucl. Phys. A555 (1993), p. 59.
- WAP: Wambach, Ainsworth, & Pines, Nucl. Phys. A555 (1993), p. 128.
- GC: Gezerlis, & Carlson, Phys. Rev. C77 (2008), p. 2801.
- GIPSF: Gondolfi, Iliaronov, Pederiva, Schmidt, & Fantoni, Phys. Rev. Lett. 111 (2008), p. 132501.
- 1ns, 2ns 3ns: ad hoc models proposed by
 - Yakovlev, Kaminker, & Gnedin, A&A 379 (2001), p. L5
 - Kaminker, Yakovlev, & Gnedin, A&A 383 (2002), p. 1076
 - Yakovlev, Kaminker, Haensel, & Gnedin, A&A 398 (2002), p. L24.

Neutrino *.dat

Dany Page

NSCool: User's Guide

Control Files

23

Conduct *.dat

HEAT TR	ANSPORT CONTROL	:	
Ø	IOPACITY		
2	ICON_CRUST		
2	ICON_CORE		
0	ICONNOTHING2	! Not used so far	
Ø	ICONNOTHING3	! Not used so far	
0	ICONNOTHING4	! Not used so far	
0	ICONNOTHING5	! Not used so far	
0.0	CONNOTHING1	! Reserved for strange star	
0.0	CONNOTHING2	! Reserved for strange star	
0.1	Q_imp		
0.0	CONNOTHING4	! Not used so far	
0.0	CONNOTHING5	! Not used so far	

[Note: the "_22-0.1" in the file name means that ICON_CRUST=2, ICON_CORE=2 and Q_imp=0.1]

IOPACITY :

unam

O: no photon opacity **1**: with photon opacity included in the thermal conductivity

Q_imp: "impurity parameter for e-impurity scattering.

ICON_CORE :
 1: simple Flowers & Itoh formula: $\lambda = 10^{23} \cdot \left(\frac{k_{F,n}}{1.6 \text{ fm}^{-1}}\right) \cdot \left(\frac{T}{10^8 \text{ K}}\right)$

2: use the full calculation of Yakovlev et al.

[ICON_CRUST: see next slide]

Dany Page

Wednesday, February 10, 2010

NSCool: User's Guide

Control Files

Crust Conductivity

ICON_CRUST :

This will essentially distinguish between the *Itoh et al.* and *Yakovlev et al.* calculations, both in the liquid and the crystal phases:

 $\Gamma > \Gamma_c$:

1: e-phonon from *Itoh et al.* + e-impurity from *Yakovlev & Urpin*.

2: e-phonon from *Baiko* & *Yakovlev* + e-impurity from *Yakovlev* & *Urpin*.

3: e-phonon from Gnedin et al. (2001: appendix) + e-impurity from Yakovlev & Urpin. $\Gamma < \Gamma_1$:

1: e-ion from Itoh et al.

2: e-ion from *Itoh et al*.

3: e-ion from Gnedin et al. (2001: appendix).

 $\Gamma_{I} < \Gamma < \Gamma_{c}$:

interpolate between the two previous cases (to avoid a discontinuity in λ in cases 1 & 2). [If you set $\Gamma_1 = \Gamma_c$ then, of course, there will be no interpolation !]

If $\rho < 10^7$ g cm⁻³ ("envelope"): none of the above, just use Potekhin et al. (1999).

After all this the e-e scattering contribution (Shternin & Yakovlev 2006) is added.

 $\Gamma_c = gammacryst > gammaliq = \Gamma_l are defined in the included file gamma_limits.inc.f$ [If you changes these values you MUST recompile all the fortran files: rm -f *.o and then make NSCool.out)]

Heat *.dat

Dany Page

Wednesday, February 10, 2010

NSCool: User's Guide

Control Files

28

Bfield 0.dat

Dany Page

Wednesday, February 10, 2010

NSCool: User's Guide

Control Files

30

Accretion *.dat

	00	I_Accretion_10yr-1000yr-0.1Edd.dat	\bigcirc
stituto de astronomía	ACCRETION RA 2 0.1 1.0d7 1000	TE CONTROL: i_acc 1=FREDs 2=STEPs m_dot0 m_dot_max t_acc0 Onset of accretion in years t_acc1 Burst recurrence time in years	
	10. 3. 1.e-4 0.2 0.7	<pre>t_acc2 Burst time-scale in years alpha_acc !power law index for the decay time_step_min Minimal time step (years) at beginning and end of accretion eta_Edd : fraction of acreted mass going into X-ray luminosity X_Edd : H mass fracion of accreted matter</pre>	
	year = 3.155	7600d7 seconds	
	-: I_Accre	tion_10yr-1000yr-0.1Edd.dat All (1,0) (Fundamental)	
	_		11.

These parameters are used by the accretion subroutines, in file accretion.f. See *NSCool_Guide_Accretion* for details.