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The problem to be solved

The equations to be solved are described in the NSCool Guide 1 Introduction. They are:
1) Structure of the star: the TOV equations.
2) Thermal evolution of the star.

How to use the TOV solver is described in NSCool Guide 3 TOV. Meanwhile, several
pre-built stars are available in the directory TOV/Profile.

For the thermal evolution equations, the star is cut at an outer boundary, with radius r,
and density p» (typically p» = 1070 gm cm3): at p > p» matter is strongly degenerate and
thus the structure of the star does not change with time:

The star’s structure is calculated before the cooling and not modified thereafter.

(Almost: NSCool allows for small density changes in the outer part of the star, if required)

Only the energy balance and transport equations are solved as a function of time:

- two first order partial differential equations to get L(r,t) and T(r,t) with
- aninitial L and T profile: L(r,t=0) and T(r,t=0)
- two boundary conditions, at =0 and r=r».

Note: the heat transport is a diffusion equation and numerically unstable if treated improperly. Numerical
stability is achieved using an implicit scheme (“Henyey scheme”) similar to the textbook Crank-Nicholson.
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Rewriting the thermal evolution equations

instituto de astronomia

The equations to solve:

Energy balance Energy transport
d(Le*®) 4rr?e® ( dT & ) d(Te®) 1 Le®
= — Cv—F + v — = —<-
dr V1—2Gm/c2r dt  © (@ = Qn) dr A 42\ /1 —2Gm/c2r

Use red-shifted functions: 7 =e®T and L = 2L

d the L ' dinat b b da = 4nr’dlng = Amrins dr
and the Lagrangian coordinate a (baryon number) = B \/1 —oGm/cer
to get: %:_&d_T_eNQV_Qh or d_7':_e2¢QV_Q”_”_B%

da ng dt ng dt C, C, da
dT 1 L dT
and: - =_= _ 2v2, o 9
da A\ (4mr?)2ng e® or L A 4mr7) ng € da
which we write as: d_T —F (T, % and L£L=G|T, d_T
dt da da

(the T dependance of F and G comes from Q., Qx, Cv, and A)
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Finite differencing the equations

For finite differencing these equations one divides the star into shells, at radii
ro=0, r1, ..., i, ... max. L, being a flux, is defined at the shell interfaces while T is

understood as the average in the interior of each shell: it is common to write then

Liand Ti+» to emphasize this.
Since fortran does not like loop indices with half integer values | used:

Lisdefinedati=0, 2, 4, ..., imax-1

Tis defined ati=1, 3, 5, ... , imax

y,
dT dL o dTi dL . dl|  Liy1—Li
dt F(T' da) Todt F( " da ,) with 43 . daj_1 +da
fori=1,3, 5, ..
B dT oA dT . - T+ T dT| Tiv1—Ti-1
L=G (T, da> > Li=G (TI,, 1 /) with T, = > and da | ~dar 1+ da
fori=2 4,6, ...

where dajis the number of baryons between ri.1 and r;
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Stepping forward in time

Assuming we know the profiles of 7 and £ at time t: 7 °ld and Lo!d
we can write for 7 and £ at time t’=t+dft:

old
JT:F<79£> —+'T:Tm+dpF<Tmfw )

Explicit dt da da
scheme old
L—GCﬁﬂI> — E-G(ﬁ“ﬂT )
da da

this is very easy to integrate BUT:
it is numerically unstable unless dt is very small (Courant dixit)

Better: evaluate F and G at the new values of 7 and £:

d—T:F(T,%) s T:To'd+dt-/—‘<7',%>
Implicit dt da da
scheme
EzG(T,d—T> — £:G(T,d—T>
da da

this is numerically stable (and allows large dt) BUT:
extracting the new 7 and £ is tough

(particularly 7 because it is inside Qv, Qn, Cv, and A)
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Solving the implicit equations by iterations
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Assuming we know the profiles of T and £ at time t: 7°d and £o'd

we can find the new 7 and £ at time t’=t+dt by successive approximations
(TO, LO) — (TWD, L) — (TP, LD — (TP, LB)) - .

As an initial guess for (7¢9), £(9) one can take (7(®, £(0)) = (7 old rold)
or extrapolate from (‘7 °l4, f°ld) and the previous values (‘7 °lder  solder)

Evaluate the functions F and G with 7:(k and £;{ to obtain 7; 1 gnd £; k+1:
(k) (K)
T(k+1) - Told +dt-F (T(k) d_L ) £(k+1) —G <T<-k) d_,T )

"' da da
then plug back 7:k*1) and £i 1 into F and G to obtain 7:¢k+2) and L£i(k+2)
and so on until some K when T; KD = 7K gnd £;K+D) = £,

(All T:K and £: K are successive approximations at the same time t’. T:°'9 does not change, it is at time t !)

i

As long as the initial guess (7(9, £(9) is not too far from the solution
the method will converge to the solution (maybe in 10 iterations ?)
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Improvement: the Henyey scheme

Instead of using brute force iterations, the Henyey
scheme use the Newton-Raphson method The Newton method
for solving multi-dimensional equations. “ to solve f(x)=0

f(x)

T—TM—dt - F(T,9%)=0
Write the equations as:
L-G(T.4L) =0

or, in N dimensional notation:

c o (X) o
() (200 ) /

§.2 and P(X) = f(Xk41) =0 <
’ F(x) + /() - (X — x) = 0

\ ) K : ) = X1 = X — [ (0] F(x)

d(X)=0 with X=

and the Newton-Raphson iteration procedure is: ~ X(kT1) = x(K) — [Dpp (X))~ . o(XK)
where [D®(X)] is the NxN derivative matrix of ®(X) and [D®(X)]"! the inverse matrix.

This involves calculating T derivatives of Q,, Qn, Cy, and A and inverting a large matrix.
Fortunately this matrix is tri-diagonal and its inversion is straightforward !

One still have to preform iterations but the convergence can be much faster than brute force.
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Checking for iteration convergence
and time step control

T (k) o T (kD) = g2 (k) 4§77 (k) [i=1, 3, 5, ...]
Li0O = iD= £,00 4 50,00 [i=0, 2, 4, ..]

Convergence will be considered to have been achieved when

67 Jog
Maxj=13s,... G | <er and Maxi—opa.. | —y | <eL
T; L

The Newton-Raphson iterations go as:

Values of €7 and &, of the order of 10-1° can be reached in 4 - 6 iterations.
However, if 7:(9) and/or £i(% are too far away from the solution, iterations go on forever:

the loop is exited, the time step dt is shortened and the iteration procedure restarted.

(It is not unusual to see dt being cut many times, e.g., when a phase transition (superfluidity/superconductivity) occurs

at some point in the star. Sometimes things go real bad (dt — almost zero): “Ctrl-C” is the only solution, and figure
out what's happening.)

Time step control: at every new time step dt is increased: dt = dt (1+a) (a ~0.2) but:
- if Newton-Raphson converged in << 5 steps a larger a is chosen
- if Newton-Raphson needed > 10 steps to converge a smaller a is chosen

- if Tand/or £ changed too much (from 7 °d and/or £°9) a smaller a is chosen,
while if they changed ways too much, the time step is recalculated with a smaller dt.
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The boundary conditions

Inner boundary condition: L(r=0) =0 or Li=0=0

This is easily implemented by initially starting with Li-0<=® = 0
and imposing 8Li-0%) = 0 at every iteration.

Outer boundary condition (see NSCool_Guide_1_Introduction):
Itis (at r =r): L(rp) = 4mR%0s[Te(Tp)]* with T, =T(r)

where (in present notations): L(rp) = €2%(mac?) L(jmax-1) and T(rp) = € ®lmad T{imax)
and Te(Tp) is a function (a “Te-Tp” relationship) obtained from some envelope model.

This is implemented as part of the inversion of the matrix [D®(X)]

Add more details about this !
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Flow diagram of NSCool

unam

/ Read Cool_*.in /
Read controle files

| |
| |
| |
| |
|

Initialization > |
| l |
| |
| |
| |
| |
| |
|

Initialize some stuff

l

Define the initial
T and L profiles at t=0

Initial guess of the new Calculate the

|
Time integration -

5 |
E T and L profile at new t | new time step |
¥ l E ! |
§ i |
| ; Get correction to T: 8T !
] : Get correction to L: oL | | |
. . . B
with iterations . NS urady : |
: , |
to reach accuracy X : |
. . : NO 8’zlﬁccur%iy: '
N T & L prOf”eS | E are 95 and G small | |
: | ! enough? | |
at each time step X , |
| YES NO |
Print out results in A YES
: Teff_*.dat & Temp_*.dat finri:hvgg? END

Notice: NSCool contains an extra “model loop” to run several cooling models from the same Cool_*.1n file.
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Flow diagram of NSCool (bigger)

Initialization

Initial guess of the new

T and L profile at new t

K - - . »‘
cSCape Route l

Get correction to T: 8T
Get correction to L: oL

AV curacy

|()Ug)

Accuracy:

NO are oT and oL small

-
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enough?

Print out results in
Teff_*.dat & Temp_*.dat

Calculate the

new time step

A

Firn2

1000

NO

Are we
finished?

END
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Reading the

unam

NSCool. f file

® 00 NSCool.f

The next slides describe the structure of
NSCool.f:

hnglamantatiun uf ha
praalous How diagram

There are many sections of just screen
print out (unimportant for now).
They are all marked the same way
between two line of:

end if
end 1f

call accretion_rate(time+dtime,dtime,m_dot)
call accretion_velocity(m_dot)

1f (pscreen.ge.2) then
C 1f (pscreen.eq.3) read(5,*)
read(5,*)
write(6,*)
print

print ,istep,

print

print R
,(time+dtime)/year,
,dtime/year,
,dtime/odtime
print *
1f (chtemp.eq.1.) then
print R
,mdtemp,
,rrho(icht), ,temp(icht)
end if]
1t (chstoke.eq.1.) then
print
,mdstoke,
,rrho(ichs), ,stoke(ichs)
end if
1f (chtrial.eq.1l) then
print

end 1f
end 1if

LR LR L LR LR L L L L

1f (debug.ge.1l.) print *,'(

coeff_int=0. %\ !
-:** NSCoolf  354(490,13

H,TTE 3 ‘ =
s nuniuge |

[ | NSCool.f

600

Lines like these would include
commands for magnetic field w——l)
evolutions (not used anymore).

c BEBBBBEBBBBBBEBBEBBEBEBBBBEBBBBBEBBBBBBB
C INCLUDE 'Bfield/Bfield_3.inc.f’
c BEBBBBEBEBBBBEBBEEBEBEBBBBEBEBBEBEBBBBB

:-- NSCool.f 38% (476,22) (Fortran)

Dany Page NSCool: User’s Guide
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Code Structure
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Code
variable

time
dtime
temp(i)
ntemp(i)
dtemp(i)
delt(i)
lum(i)
nlum(i)
dlum(i)
dell(i)
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Essential variables in NSCool . f

t

dt

fI{old
ffiCk)
d7:k)/da
WSS
£iold

L; (K
dLi(/da
&Lk

Code

variable The new time is

istep time index t’ =t+C_jt

itrial iteration index but there is no
variable for t’

Code

variable

rad(i) r

rrho(i) P

debar(i) da
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Beginning of the loop:

This runs through the
various models listed in

Cool_*.in,

‘model” loop

®00 NSCool.f =)

C 2 2 e e o e e o o o o ok ok ok ok ok ok ok ok o e e ke ke ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ke ok ke ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok
C 4 2 e e e o e o o o o ok ok ok ok ok ok ok ok o e e e ke ok ok ke ok ok ok ok ok ok ok ok ok ok o ok ok ke e e ke ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
C 3 2 e e o e e o o o ok ok ok ok ok ok ok ok ok ok ok ok LET'S GO ! 2 2k 2k e o e o o o o o o o ok ok ok ok ok ok ok ok ok ok ok ok ok
C 2 2 e e e e e e o o o ok ok ok ok ok ok ok ok o e o e ke ke ke ok ke ok ok ok ok ok ok ok ok ok ke ok o ke e ke ke ke ok ok ok ok ok ok ok ok ok ok ok ok o ko ok ok ok ok ok ok ok ok ok m

C e 2 e e e e e e o o e ok ok ok ok ok ok ok ok o o e e ke e ok ok ok ok ok ok ok ok ok ok ok ok ok e ke e e ke ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok

and will cool all of them,
one after the other.

End of the loop:

Close the output files

(Teff_*.dat & Temp_*.dat) -

i_model=0

C 2 2 e e e e e e o o e o ok ok ok ok ok ok ok e e e e ke ke ok ke ke ok ok ok ok ok ok ok ok ok ok ke ke ke ke ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok
C 2 2 e e e e e e e o e ok ok ok ok ok ok ok ok o e e e ke ke ok ke ok ok ok ok ok ok ok ok ok ok ok ke ke ke ke ke ok ok ok ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok
C FHEEEEAEREE®X  BEGINNING OF A NEW MODEL CALCULATION skt
C 4 2 e e e e o o e e e o ok ok ok ok ok ok ke e e e e ke ke o e ke ok ok ok ok ok ok ok ok ok ke e ke e e ke ke ok ok ok ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok

C 4 e e e e e e e e o e o ok ok ok ok ok ke ok e e e e ke ke e ke ok ok ok ok ok ok ok ok ok ke ke e e ke e e ke ke ok ok ok ok ok ok ok ok ok ok ok ok ok ke o ok ok ok ok ok ok ok ok ok

and go to next model.

Now, it's really finished.
Close the master input file
(Cool_*.1in)

Dany Page NSCool: User’s Guide
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P . a
1234 continue
\l O\
i_model=1i_model+1 \
idt=1
htot=0.0
contraction=0.d@ )
A
C e o o e e o o e ok o e o o ok e ok ok ok e o o e ok o ok e e ok ok ke o ok e ok ok ok e o ok ke e ok ok e ok ok ok e ok ok ke ke ok ok e ok ok ke ke o ok e ok ok ok ok ok ok ok v
-:** NSCool.f 12% (171,0) (Fortran)
¢ Close the output file for the present model: *¥¥¥**¥kkkkkkkkEEEAAANN*
close(unit=10,status= D)
close(unit=19,status= D)
¢ Go back to the beginning: do the next model listed in the "Input file®
goto 1234
’ ‘------------------'
C e e ok e e o e o e e ok e o o e o o e ok e ok e e ok e e ok e ok o e ok e e ok e ok o e ok e ol ok e ok o e ok e ke ok e ok e e ok o ke ok e ok o e ok ok ok ok ok ok
9997 continue ! This is the real end of it !
C e e ok e o o e o e e o e o o e ok o e ok e ok e e ok e e ok e ok e e ok o e o e ok o e ok o ol ok e ok o e ok e ke ok e ok o e ok e ok ok e ok o e ok ok ok ok ok ok
close(unit=15,status= D]
p"int *,
end
C e e ok e o o e o e e ok e ok ok e ok ok o ok e ok o e ok o ke ok ke ok o e ok ok ke ok e ok ok e ok ok ok ok ke ok ok e ok o ok ok e ok o e ok o ok ok e ok o ke ok ok ok ok ok ok
C e e ok e o o e ok o e ok e o o e ok ok e ok e ok o e ok ok ke ok ke ok o e ok ke ol ok e ok ok e ok o ol ok ke ok o e ok ke ok ok e ok ok e ok o ok ok e ok o ke ok ok ok ok ok ok
C e e ok e o o e ok o e ok e o o e ok ok ke ok e ok e e ok ke ke ok ke ok o e ok ok ke ok e ok ok ke ok o ol ok ke ok ok e ok ok ke ok e ok o e ok o ke ok e ok o ke ok ok ok ok ok ok m
C e e ok e o o e ok o e ok e o o e ok ok ok ok e ok o e ok ok ok ok ke ok ok e ok ok ke ok ke ok ok ke ok ok ok ok ke ok o ke ok ok ke ok e ok o e ok o ok ok e ok o ke ok ok ok ok ok ok ;
C e e ok e o o e o o e ok e ok o e ok ok ok ok e ok o e ok ok ok ok ke ok ok e ok ok ke ok e ok ok e ok o ok ok ke ok o e ok o ok ok e ok o e ok ok ok ok e ok o ke ok ok ok ok ok ok v

-:** NSCool.f 98% (1275,15) (Fortran)

—
Code Structure
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The “Input File” (Cool_*.1in)

unam

If just beginning (i_model=1):

ask for the master input file
(Cool_*.in) and open it.

® 00  NSCool.f

then:
read the cooling model files

Dany Page NSCool: User’s Guide
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(a]

C
C
C

4 o 2k o e e o e o e o e o e e o e o e o e o o o ke o ke o e o e o ke o ke o ke e ke ok ke ok ke o ke o ok ko ke ok ke o ke ok ok ke ok ok ok ok ok ok ok ok ok

e o o o o ok ok o ok ok ok ok ok ok ok ok ok GET INPUT MODEL FILES e ok e o o ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok

0 e 24 e e e o e o e e e e e e e e e e e e e o o e o e e ke e e e ke e e e e e e e e e e e e ke e ke o e e ke o e ko ke ok ke o ok ok ok ok ok ok

k%

* k%

k%

1f (i_model.eq.1l) then
Choose between two input: e o o e e e e e e ok ok ok ok ok ok o o ok e e e o ke ok ok ok ok ok ok ok o o ok ok ok ok ok ok

Ask for the input File e 2 e o ke e ke o e o o e o ke e ke o e e e e o ke o ke o ke o ok ok ok ke o ok ok ok ok ok ok ok ok

write(6,*)

read(5,*)filename

Can add here the directory where "Cool_*.in" is:
filename="Mode! //filename

Op define it Completely here: e 2 o e e e o e o ok o e o ok ok e e ke ok e ok ok ok e o ok ok o ok ok ok ok ok ok
filename="Model_1/Cool_Try.in'

write(6,*)'Using as input: ',filename
C**********#****#****#****#****#****#****#******#****#*********#****#**
open(unit=15,file=filename,status="01d")
else
read(15,*,end=9997,err=9997)
end if
read(15, *,end-:::ﬁ err=9997)version
if (version.eq. STR') then
istrange=1
else
istrange=0
end if

C

C

* kK

* k%

BASIC MODEL FILES: e 2 e o e e o e o e o e e o e ok e e o e ok e ok e e o e ok e ol e e ok e ok e ke o e ok ok ok ok ok ok ok
read(15,*,end=9997, err=9997)
read(15,*,end=
read(15,*,end=
read(15,*,end=9997, e"”—JJ‘ﬂ)f_proflle
OTHER MODEL FILES. e e e e e e e e e e e e e e e e e e o o ok e e e o e e e e e e ke ok ok ke ke ok e o o ok ok ok ok ok ok
read(15,*,end=9997,
read(15,*,end= 7
read(15,*,end=
read(15,*,end=
read(15,*,end=
read(15,*,end= 997)f_Conduct
read(15,*,end=9997 9997)f _Heat
read(15,*,end=9997, >
read(15,*,end=9997, e"”-"‘j)f_ACCPetlon
i1f (istrange.eq.1) then
read(15,*,end=9997,err=9997)f_Strange

7,err=99

end if
C * kK OUTPUT FILES: e e e e o ok ok ok ok ok o o o e e ke e e ok ok ok ok ok ok o ok ok e e ok ke ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok ok
read(15,*)
read(15,*,end=9997,err=9997)f_1i
read(15,*,end= 7 g )f_Teff

read(15,*,end=9997, J)f_Temp
read(15,*,end=9997,err=9997)f_Star

C**********************************************************************

-:** NSCool.f 14% (203,56) (Fortran)

Code Structure
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Initialization (1)

unam

® 00 ~ NSCool.f =

e e e e o o e e o ok e e o ok o e ok ok ok e e ke ok ok o e ok ok ok e ke ok ok ok e ke ok ok ok ke ok ok ok e ok ke ok ok o ke ok ok ok o ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok
e o e o ok o o o ok ok ok ok ok ok ok ok ok READ THE ABOVE FILES 3 2 e o o ok o o ok ok ok ok ok ok ok ok ok ok ok ok ok ok

Open and read the model ﬁles l sk o o e e o o e o o o e o o o ke o o e ok o o e o o o ok ok o o ok o o e ok o o ke ok o o ok ok o o ok o o o ok o o ok ok o o ok ok o ook ok o ok ok ok ok ok ok
(the ones listed in Cool_*.1in) ' INCLUDE "NSCool_READ.inc.f'
[aII this iS in NSCOO-I__READ o -i_nc A -F] e e 2 e o e o e o e o e e e e o e o e o e o e o e ke e e o e e e o e o e ok e e e ke o e o e o e o e ok e ok o ke ok e ok e ok e ok e ok o ok ok ok ok ok

e o e o ok o o o ok ok ok ok ok ok ok ok ok INITIALIZATION 3 2 e o o ok o o ok ok ok ok ok ok ok ok ok ok ok ok ok ok
3 e e e o 2 e e e e e e e o e e e e o e e e e ok e e e ok ok e e ke ok ok e e e ok e e e ol ok e e e ke ok e e ke ok ok e e e ok ok o e ke ok ok o ok ok ok ok ok

if (debug.ge.l.) print *,'Initializing’

3 e e e o 2 e e e e e e e o e e e e o e e e e ok e e e ok ok e e ke ok ok e e e ok e e e ol ok e e e ke ok e e ke ok ok e e e ok ok o e ke ok ok o ok ok ok ok ok

l *** Get the time independent pieces Of phySiCs: *¥FFFEEIddAAEXIXEREXX

Call a bunCh Of SUbrOUtIneS e 2 e e o o e e o o e e o e e o ok e ke o ok e e ok e ke o ok e e o ke ke ok ok ke e o ke e ok e ke o ok e ke ok ke e o ok e ke o ok e ok ok e ke ok ok ok ok ok ok ok
[more on this Iater] get_core_chemistry MUST be called BEFORE get_crust_chemistry

-:** NSCool.f 20% (259,0) (Fortran)

" NSCool.f

C e e e e o o e e o ok e e o ok o e ok ok ok e e ke ok ok o e ok ok ok e ke ok ok ok e ke ok ok ok ke ok ok ok e ok ke ok ok o ke ok ok ok o ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok

Cc ***** (Calculate the T-independent coefficients ***¥FFEkkEEEEEEEEEEREX
C e o o e o o e e o ok e e ok ke e o ok e ke o ok e o ok e ke o ok e e ok ol ke o ok e ke o ok e o ok e ke o ok e ke ok ke e o ok e ke o ok e ok ok ke ok ok ok ok ok ok ok ok

Calculate some pieces of !
physics (as, e.g., the €®’s,...)

if (debug.ge.l.) print *,'Calculating T-independent coeff.’

-:** NSCool.f 23% (287,31) (Fortran)

Dany Page NSCool: User’s Guide Code Structure 16
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Initialization (2)

Call some more subroutines l

[more on this later]

Calculate the initial (t=0) |

T & L profiles

Open the output files !
[all this is in NSCool_OPEN.inc. f]

Dany Page
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NSCool: User’s G

® 00  NSCool.f

C e o o e e o e e o o e e o o e e o e e o ok e ke o ke e e o e e o ok e e ok e e ok ok e ke o ke e e ok e e o ok e ke ok ke e ok ok e e o ke e ok ok ok ok ok ok ok
C * %k %k Inltlallze some more Stuff: e 2 o o o o ok ok ok ok ok ok o ok ok ok ok o ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok

C e e e e e o e e e o e e e e e e ke o ok e e ke ok ok e e ok ok o e ke ok ok o e e ok ke e e ke ok ok e e ke ok e e ke ke ok e e ke ok ke ok e ke ok ke o ok ok ok ok ok ok

if (i_heat_deep_crust.eq.1) thern

call initialize_heating_deep_crust(f_heat_deep_crust)
end if

1 (i_heat_thermonuclear.eq.1l) then

call initialize_heating_thermonuclear(

-:** NSCool.f 25%(316,38) (Fortran)

3 2 e o o ok o o o ok o e o ok ok o ke ok ok ok o ke ok ok ok o ok ok ok ok ke ke ok ok ok ok ke ok ok o ok ok ok ok ok ke ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

*¥*xxxxxx* Calculate the initial Temp and Lum profiles *****kkkkkkrrrx
e o e e o e e o o e e o o e e o e e o o e ke o ok e e o e ke o ok e ke o e e o ok e e o ke e e ok ke e o ok e e ok e e o ok e e o ke e o ok ke ok ok ok ok ok

INCLUDE "NSCool_INIT_TPROF.1inc.f’

BEBBBBEBBEBEEBEEBBEEEBEEEBEBBEBEBEBBBBBEBB
INCLUDE 'Bfield/Bfield_2.inc.f’
BEBBBEBBEBBEEBEEBBEBEEBEEEBEEBEBEEBEBBBBBEB

e e o e o e o e ok e ok o e o ke ok ke ok ke ok ke ok o ok ok ke ok ke ok ke ok ke ok ke ok o ke ok ke ok ke ok ke ok ke ok ke ok ok ok o ok ok ke ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok

e 2 e e e o o o e ok ok o ok ok ok ok ok ok 0pen print out files 4 e e e e o e o e e o e ok o e e e e ok ok o o ok ok ok ok ok ok ok

3 2 e o o ok o o o ok o e o ok ok o ke ok ok ok o ke ok ok ok o ok ok ok ok ke ke ok ok ok ok ke ok ok o ok ok ok ok ok ke ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

INCLUDE 'NSCool_OPEN.inc.f’

C e e o e o e o e ok e ok o e o ke ok ke ok ke ok ke ok o ok ok ke ok ke ok ke ok ke ok ke ok o ke ok ke ok ke ok ke ok ke ok ke ok ok ok o ok ok ke ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok

C 3 2 e e e o e e e o e e e o ok e e ke ok o e e e o ok e e ok ok ok e e ke ok e e ke ke ok e e ke ol ke o e ke ok ke e e e ok e e e ke ok e o ke ok ok o ok ok ok ok ok

-:** NSCool.f 28%(361,0) (Fortran)




)

(1

instituto de astronomia

unam

Beginning of the loop:
The time stepping loop

(after some little set-up,
as resetting the time !)

End of the loop:

® 00 ~ NSCool.f

C e e 2 e e e e o e e e o e o e o e e e e e ke e ke e ke e ke e e ke e ke e o ke ok e e e ok e ok e ke ol ok e ke e ke e ke ok ok ke ke ok ok ok ok ok ko

1f (time/year.ge.timemax) goto 9998
1f ((sign_l*teffective).lt.tempmin) goto 9998

C ok o e o ok ok o e ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ke o ok ok i ot sk o ok ok ok o ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

! This is the “end do' for the main time integration
C e 2 2 o e o o ok o ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ol ok ol ol i S o e ot ke ofe ke ke ke ke ke ok ok ok ok ok ok

9999 continue

C e e e o e e e o e e e o e e e ok e e ok o e e ke ke e e ke e e e ke ok e e ok ok e ke e ok e ke ok ok e ke ol ok e ke ok ok e ke ok ke o ke ke ok ke ok oR b

9998 continue I Jump here if time > timemax

C e 2 o o 2k o o o ke o o o ke ok o o ok ok o ke ke ok ok ok ok ok ok ok ke ok ok ke ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

® OO0

Nn N nN0nNnnNn

Nn=n

-:** NSCool.f

The “time loop”

| NSCool.f

3 2k 2 e e e e ok ok e e e e o ok e e e e e e ok e o e e e e ok ke o e e ke ok ok ke e e e ke ke ok ok ok e ke e ke ok ok ok e e ke ke ok ok ok ok o ok ok ok ok ok ok ok ok
2 2k o e o o o ok ok o o ke ok ok ok ok o ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

COOLING

3 e e e o o e ok ok ke e e e o o o e e ok ok ke ok o ok e ok e e ok ke ok ke ok o ok ok e e e ok ok ke ok ok ok ok ok e ok ke ke ok ok ke ok o ok ok ok ok ok ok ok ok ok ok ok ok

3 2k e e o o o ok ok o o ok ok ok ok ok o ok ok ok ok ok ok ok e e e o e ok ok e e o o ok ok ok e o ok ok ok ok ok ok ok ok ok ok ok ok

3 2k 2 e o o o ok ok e o ok o ok ok ok e e ok o ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ke ke ok ok ok ok ok o ke ke ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

3 2k 2 e o o o ok ok o ok o ok ok ok ok ok ke ok ok ok ok ok ok ke ok ok ok ok ok ok ok ke ok ok ok ok ok ok ke ok ok ok ok ok ok ke ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

time=timed | Initialize the time

icycle=0 ! Initialize the counter for accretion cycles
3 e o e e o e o e e o e e e e o e e o e ok e ke o ke ok e ke o ke ok ke ke o ke ok e ke ok ke ok ke ke ok e ok e ke ok e ok ok ke ok ke ok o ke ok ok ok ok ke ok ok ok ok ok ok

3 2k 2 e o o o ok ok o o ok o ok ok ok o ke ke ok ok ok ok ok ok ok ok ok ok ok ok o ke ok ok ok ok ok ke ke ok ok ok ok ok ke ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

itprint=0 ! To print out the initial T and L profiles

itprint=1 ! To print out only at the required times
e o o o o o o o o o o o o e e ok ok ke ok ok ok ok ok ok ok ok o ok ok ok ok o e ke ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok e ke ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

3 e e o o ok ok o o e o ok ok ke o ke ke ok ok ok ok o ke ke ok ok ok ok ok ke ke ok ok ok ok ok ke ke ke ok ok ok o ke ke ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

THIS IS THE MAIN TIME LOOP:
do 9999 istep=1,istepmax

e e e e e e e ok ok ke o e e e e e o ok ok ok ke ok ke ke e ek o o ok ok ok ok ok ok ok 3 3 e e e e o o ok ok ok ok ok ok o o ok ok ok ok ok

29% (386,0)  Fortran)

0 It stops when you run

c Close the output file for the present model: *¥*¥*¥d¥idddAAANEXEXEXEX v ()ljt ()f tIrT1€3 55t€3F355 or

-:** NSCool.f 97% (1272,0) (Fortran)

you run out of time

Dany page NSCool: User’s Guide
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)

instituto de astronomia

unam

=\ Prepare for iterations

®0O0 - | NSCool.f )

—

C *%% Accretion rate: stk ook ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok
icycle_old=icycle
1f ((i_acc.eq.1).or.(i_acc.eq.2)) then
1f (time+dtime.ge.t_acc®) then
icycle=int((time+dtime-t_acc®)/t_accl)+1l m
t_burst= time+dtime -t_acc® - “loot(icycle-1)*t_accl

CaICUIate the ! t_burst = time since beginning of burst

. e?se
| accretlo_n rate | Doreeca. 0
(in case there is accretion) end 1F

call accretion_rate(time+dtime,dtime,m_dot)

call accretion_velocity(m_dot) -
C o e o o e o o e o o e ok ok ok ok ok ok ok ok ok ok ok o e ok ok ke ok o ke ok o e ok ok e ok ok ke ok ok ok ok ok ke ok ok ok ke ok ok ke ok o ke ok o e ok o e ok ok ok ok ok ok ok ok A

-:** NSCool.f 32% (418,0) (Fortran)

| NSCool.f

C 30 e 2k e 2k e ke o ke e e o e o e o e o e ok e ke e e o ke e ke o ke o e ok e ok e ok e ok e ok e ke ok ke e b o ke ke ke o e ok e ok ok o ke o ok o ok ok ok ok ok ok

Cc ***** (Calculate ntemp & nlum for first guess ***FFF¥iikkiikkiirriirr*
€ A A A A A A A A A A A A A A A A A A A A R R R R R R R R R R R o o o o o o o o o o o o o o o o o o o o o o o o o o oo oo o o

if (debug.ge.l.) print *,'Guessing NLum & NTemp'

coeff_int=0.8d0

do i=1,imax,2 m
ntemp(i)=temp(i)+coeff_int*(temp(i)-otemp(i))*dtime/odtime

end do

dtemp(©)=0.d0

Calcu Iatgj(:llj i) fl rSt g ue(?(so) dZtl;sgr)n:)((;\iéfip(ul)—ntemp(i—1))/(debar‘(i)+debar‘(i+l))
profiles: 7T{*=% and Li*=

end do

nlum(@)=0.

do i=2,imax-1,2

nlum(i)=lum(i)+coeff_int*(lum(i)-olum(i))*dtime/odtime

end do

do i=1,imax-2,2

dlum(i)=(nlum(i+1)-nlum(i-1))/(debar(i)+debar(i+l))

end do v
-:** NSCool.f 36% (464,0) (Fortran)

>

Dany Page NSCool: User’s Guide Code Structure
Wednesday, February 10, 2010



The Newton-Raphson loop

unam

Reset the iteration

loop counter:

(this is also a branch
point in case of failure)

Beginning of the iteration loop:

Increment the
iteration counter

l

Escape Route: Too many iterations:
First Exit it is not converging

End of the iteration loop:

» Converged:
go to next time step.

* Not converged:

go to next iteration.

Dany Page

Wednesday, February 10, 2010

(start again with a

smaller time step dt)

l

NSCool: User’s Guide

®00 | NSCool.f

C e 2k 2 e e e e e e e e e o o ok ok ke e e e e e e e e e e ok ke ok ke ok ke e e e e e e o ok ok ok ok ke ok e e e e e o o o ok ok ok ok ok ok e e o o ok ok ok ok ok

C THIS IS THE MAIN TIME LOOP:
do 9999 istep=1,istepmax

C e 3k o e e e e e e e o o o ok ok ok ok e e e e e e e o o e ok ok ok ke ok e e ke e e e o o ok ke ok ok ok ke e e e e o o o o ok ok ok ok ok ke e e e o o ok ok ok ok

debug=0.
1f (istep.ge.istep_debug) debug=debug_keep
1 (debug.ge.l.) print *, Going: istep=',istep

C 3 2k 2k e e o o o o o o o o o ok ok ok ke e o o o o o e ke ke ok ok ok ok ok ok o ok ok e ke ke ok ok ok ok ok ok ok ok ok o o ke ok ok ok ok ok ok ok ok ok ok ok ok ok

2345 1itrial=0 ! Branch back here in case:
! - Too many iteration in Newton-Raphson
! - Envelope boundary condition cannot be s
! - Temp has changed too much
4 e e o o e e e ok o e e ok o e e o o o e e ok o e e ok ok o e ok ok o e e ok ok o e ke ok o e ke ok o e e ok ok o e ke ok o e e ok ok o e ok ok o o ke ok ok ok ok
:** NSCool.f 31% (397,0) (Fortran)
e e e o o e e o o e e e ok e e e ol e o e e o e e e ok e e e e ke o e e ok o e e ke o o e e ok ok e e ok ke e e ke ok o e e ke o e e ke ok o ok ok ok ok ok ok
e o b ok e e o o o b ok ke e o o o ok ok ke e o o o ok ok ok e o o ok ok ok ok ke ok ok ok ok ke e ok ok ok ok ok e ok ok ok ok ok ol e ok ok ok ok ok ok o ok ok ok ok ok ok
o o ok ok Branch here if new trial 4 e e o o e e e o o e e o o e e ok ok o e e ok o e e ok ok o e ok ok o o ke ok ok ok ok
3 e e o o e e e o e e e ok e e e ok e o e e o e e e ol o e e e ok o e e ok o e e ke e e e e ok o e e ol o o e e ok e e e ol ok e e ok ok o e ke ok ok ok ok

nNNDoNonnl,,n—

3 2k 2 o o o o o o o o o ok o ok ok ok ok ok o o ok ok ok ok ok ke ke ok ok ok ok ok ok ok ok ok ke ke ke ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok

C e 2k 2 e e e o o o e o e o e ok ok ok e e e e o e o e e e ok e ok ok ok ok e ke e o o e ke ok ke ok ok ke ke ke ke e o o e ke ke ok ok ok ok ok ok o ok ok ok ok ok

2000 itrial=itrial+l I This is the Newton-Raphson 1oo
C o e ok o ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
1f (itrial.eqg.itrial_max+1)then
tcut=dsgrt(dte)
1f (time.le.l.e5) tcut=dsgrt(dtl)
dtime=dtime/tcut
goto 2345
end if

-:** NSCool.f 39% (498,0) (Fortran)

C 3 2k 2 o e o o o o o ok o o o ok ok ok ok ok ok o ok ok ok ke ke ke ke ok ok ok ok ok ok ok ok ok ok ok ke ko ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok

C Decide if converged or not:
1f ((ratiot.lt.mratt).and.(ratiol.lt.mratl).and.(ratios.lt.mrats))
x then
continue ! Converged ! continue to next time step
else
goto 2000 ! Not converged ! Go back for another iteration
end if

e 2k e e e e e e e e e o o o e ke e e e e e e e e e o o ok ke ok ke ke ke e e e e e e e ok ok ok ok ok ok e e e e e o e o e ok ok ok ok ok e e o o ok ok ok ok ok

-:** NSCool.f 66% (855,0) (Fortran)

0

Code Structure




instituto de astronomia

unam

Flow diagram of NSCool (bigger)

Initialization

Initial guess of the new

T and L profile at new t

K - - . »‘
cSCape Route l

Get correction to T: 8T
Get correction to L: oL

AV curacy

|()Ug)

Accuracy:

NO are oT and oL small

-

Wednesday, February 10, 2010

T L
enough?

Print out results in
Teff_*.dat & Temp_*.dat

Calculate the

new time step

A

Firn2

1000

NO

Are we
finished?

END
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instituto de astronomia

unam

Adjust density in outer

Prepare matrix [D®(X®)]

® OO0 NSCool.f (@)

part, if required.

— —

P—

Calculates physics
(Qv, Qn, Cy, and A) at Ti®

T is changed to (1-€)- Ti¥

to calculate the derivatives
Yy

—

Readjust density in outer
part, if required.

Recalculates physics
(Qv, Qh, Cv, and A)
at (1-€)- Ti®

Dany Page NSCool: User’s Guide

Wednesday, February 10, 2010

end do ‘
A
do i=imax-1,ienv+l,-2 v
-:** NSCool.f 46% (590,0) (Fortran)
C e o o o e e o o o e o o ok ok e ke ok ok ok o ok ok ok ok e ok ok ok ok e ok ok ok ok e ok ok ok ok ke ko ok ke ke ok ok ok ke ok ok ok ok e ok ok ok ok e ok ok ok ok e ok ok ok ok ok
| c ***** (Calculate the physical parameters at (1-tinc)*ntemp **¥***d***x*
C e 2 o o e e e o o e e o o o e e o o ke e e e o ok e e o o ke e e o ok e e e o ok ke e e o ok e e e o ok e e ok o ok e e e ok ke e e o ok ok e ok ok ok ok ok m

C e e e e e o ok o o e e e o o o e e e e ok o o e e e ok ok ok o e e e ol ok e o e e e ol ok ok o e e e ol ok ok o e e ke ok ok ok o e e e ke ok ok o ok ok ok ok ok

***** (Calculate the new density in inner envelope at ntemp *¥¥¥***¥xx m
e 2 o o e e o o o e e o ok ok e ke ok ok ok e ok ok ok ok e ke o ok ok e ke ok ok ke e ok o ok ke ke ke o ok e e ok o ok e ke ok ok ok e ok ok ok ok e ok o ok ok e ok ok ok ok ok

Nalls!

1f (debug.ge.1.) print *,
do i=imax-1,ienv+l,-2 v
-:** NSCool.f 41% (518,0) (Fortran)

C e o o o ok ok o o ok ok ok ok ok o ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

c ***** (Calculate the physical parameters at ntemp *¥¥¥¥¥IddkrrIddrrr**
k e o o o e e o o ok e ke ok ok ok o ke ok ok ok o ok ok ok ok ke ok ok ok ok ke ok ok ok ok ke ok ok ok ok ke ke ok ok ke ke ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok

1f (debug.ge.l.) print *, @
do i=1,1imax,2

t=ntemp(i)/ephi(i)

d=rrho(i)

a=a_cell(i)

al=a_ion(i)

z=z_ion(1i)

call neutrino(i,t,d,a,z,gnu(i), v

-:** NSCool.f 43% (544,0) (Fortran)

€ FAAAA A A A A A R R o R R o oo K R R o o oo R o o oo ok o o o o o

***** Calculate the new density at (1-tinc)*ntemp **¥¥¥¥EIddkrEIAA*¥*
e o o o e e o o o e e ok ok ok e ok ok ok ok e ke ok o ok e ke ok ok ok ke ok ok ok ok e ke ok ok ke ke ke o ok ke e ok ok ok e ke ok ok ok ke ok ok ok ok e ok ok ok ok ke ok ok ok ok ok

™ N

1f (debug.ge.l.) print *, @
tinc=nox(1l.d-12,ratiot/1.dl)

do i=1,1imax,2

ntempl(i)=ntemp(i)*(1.d@-tinc)

1f (debug.ge.l1l.) print *,

do i=1,1imax,2

t=ntempl(i)/ephi(i)

d=rrhol(i) v
-:** NSCool.f 48% (623,0) (Fortran)

Code Structure
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instituto de astronomia

i Calculate [D®(X™®)], invert it and get X(k+1

unam

Calculate the do;
matrix elements  dX; r

P—

Calculate the ®;(X®) .

-

Calculate [D®(X®)] .

Calculate the new Xik+1) l

XD = X6 _ DXL p(XK) r

Dany Page NSCool: User’s Guide
Wednesday, February 10, 2010

® 00 NSCool.f =

| *( (rrhol(1i))- (orrho(1i)))/dtime*contraction
end do

C R KRR KRR KRR KRR KRR KRR KRR KRR R KRR KR KRR KR KRR KKK KK KK

c ***** Calculate the derivatives of fp,fq & fr *FHrFdrErEirirrrrrtoes m
€ HRRR R A R R R R R R R RO RO R R R RO R R R R R R R R R R RO R R R R R R R R R R R R R R ok ok ok

1f (debug.ge.l.) print *,

do i=1,imax,2 A

t =ntemp(1) v
-:** NSCool.f 51% (691,1) (Fortran)

end do

C A e e e e e e e e e e e o e e e e e e e e e b e e e e e e e o e e e o e o e o e b e o e e e e e ol o e o e e o ok ok o ok o ok ok ok ok ok ok ok ok ok
C Rk kk Calculate ff kb ko k ok

C Rk ko ko ko ko ko m

1f (debug.ge.l.) print *,

ff(0)=0.d0

do i=2,imax-1,2| )
fECL)=nlum(1)+.5d@*(fp(i-1)+fp(i+1))*aZephin(i)*dtemp(i) A
ff(l-L=fr(i-L+fq(i-*dlum(i-1)+(ntemp(i-1)-temp(i-1))/dtime v

-:** NSCool.f 52%(713,21) (Fortran)

C o o o o o o o o o ok ok R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R ok R R R ok ok ok ok ok ok ok ok
C LR L L Ne.'\.ton_Raphson .nethod LR R E R E LR LR R L e e

€ FRAAAAA AR KRR KRR KRR KRR KRR KRR KRR KRR KRR KRR KRR KR KK KK K K

1f (debug.ge.l.) print *,
do 1=2,1imax-1,2
| fa(i)=.5d@*dfp(i+1)*aZephin(i)*dtemp(i)+

Sde*(Fp(i+1)+fp(i-1))*a2ephin(i)/(debar(i)+debar(i+1)) A
fb(1)=.5d@*dfp(i-1)*aZephin(i)*dtemp(i)- v
-:** NSCool.f 53% (729,0) (Fortran)

end 1f

C A e e e e e e e e e e e e e e e e e e e e e b b b b b e e e b e e e e e e e e e e e ot e b o b e e e e e e o o ol o ok ok ok ok ok ok ok ok ok ok ok ok
k kR kkk Get nte.np & nlu.n hkkbkkkkkk bk kk

C A e e e e e e e o e e e e e o o b e e b b e e e b e e e b e e e o b b e ol e ol e b e o e o ol b o e e ol e ol ok ol ok o o ok ok ok ok ok ok ok ok ok ok ok

1f (debug.ge.l.) print *,

delt(imax)=ntp-ntemp(imax)

do i=imax-2,1,-2 )

dell(i+1)=Ffk(i+1)-fj(i+1)*delt(1+2) 4

dell(i+l)= Crin2.d3*ab=(nlum(i+l)),0b=(dell(i+1))), v
-:** NSCool.f 58% (792,0) (Fortran)
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D The outer boundary condition

instituto de astronomia

unam

This solves the condition:
L(ry) = 4mR?0sp[Te(Th)]*

using Newton’s method.

with Tb = T(I’b)

The function fteff(...) is Te(Th).

Escape Route:

Second Exit

Newton fails to find
the solution
(start again with a
smaller time step dft)

Dany Page NSCool: User’s Guide

Wednesday, February 10, 2010

®00 [ | NSCool.f

C 34 2 e e e e o e e e e ke e e e e ke ok e e e ke ke ok e o ke ok ke e e e ok ok e e e ke ok o e o ke ok ke e o ke ok ok e e ke ke ok e o ok ok ok ke o o ok ok ok ok ok ok

C e 2 o e o e o o o o o ok ok ok ok ok ok Boundary condition e 2 e o e e e e o o o e e o e o o e ke e o o ke ok ok o ok ok ok ok ok ok
C 34 2k o e e e o e o e e e e e o e ok o o e e ke e o e e ke e e e e e ke ke e e e ke ok e o e ke ok e e e ke ok ok e e ok ok ok e o ke ok ok o o o ok ok ok ok ok ok

if (debug.ge.l.) print *,'Boundary Condition’
if (ifteff.ne.15) then
epsilon=1.d-8
precision=1.d-12
coeff=4.d0*pi*radius**2*5.67d-5*e2phi(imax)/1sol
lhs=nlum(imax-1)+fk(imax-1)+fj(imax-1)*ntemp(imax)
ntp=ntemp(imax)
tp@_keep=ntp
7654  tp@=ntp
teffO=Fteff(tp@/ephi(imax),ifteff,eta,bf_r(imax),istep,
1 time,tsl,ts2,z_ion(imax),a_ion(imax),rrho(imax),
2 debug)
if(debug.eq.-50.) print *,'Tbh0, Ted =',tpd,teffO
tpl=C1.d@+epsilon)*tpd
teffl=Ffteff(tpl/ephi(imax),ifteff,eta,bf_r(imax),istep,
1 time,tsl,ts2,z_ion(imax),a_ion(imax),rrho(imax),
2 debug)
if(debug.eq.-50.) print *,'Tbl, Tel =',tpl,teffl
derivative=coeff*(teffl**4-teff@**4)/(epsilon*tpd)
derivative=-fj(imax-1)-derivative
1f(debug.eq.-50.) print *, Derivative =',derivative
function=lhs-fj(imax-1)*tp@-coeff*teffo**4
i1f(debug.eq.-50.) print *,'Function =",function
ntp=tp@-function/derivative
1f(debug.eq.-50.) print *, ' Del(Tp)/Tp =" ,abs(tp@-ntp)/tpd
i1f(debug.eq.-50.) print *, ' ------ > New Tb =",ntp
if ((ntp.le.0.).or.(ntp.gt.1.e12)) then ! In case the method diverges
I restart iterations with shorter time step
tcut=dsort(scale_dt®)
1f (time.le.1l.e5) tcut=dsgrt(scale_dtl)
dtime=dtime/tcut
goto 2345
end if
1fCabs(tp@-ntp)/tp0@.gt.precision)goto 7654
else
ntp=tb_acc® ! Fixed T_b for accretion
end if

C 3 2 o o o e ok o o o e ok o o o e ke ok o o e ok ok ok ok e ok ok ok e ke ke ok ok ok e ok ok ok o e ok ok ok ok e ke ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

-:-- NSCool.f 55% (712,0) (Fortran)

Code Structure



instituto de astronomia

unam

Calculate the:

Maxi=135.... '
,77(k)
Jog -
Ma = '
X 2,4.0,... [:gk) —

to check accuracy
and convergence

As seen previously, next comes
the end of the iteration loop:

* Converged: l
go to next time step.

* Not converged:
go to next iteration.

Dany Page NSCool: User’s Guide
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Check accuracy

®00 NSCool.f =

C 2 e o e o e o o e ok e ok ke ok ke ok ke ok o ok ok ke ok ke ok ke ok e ok ok ok ok ke ok ok ok ok ok ke ok ok ke ok ke ok ke ok ok ok o ok ok ke ok ke ok ke ok ok ok ok ok ok ok ok ok ok ok ok

C ***xx Analyze the results to see if it has converged ****¥¥¥rirrrrrrx
C 2 2 e e o e e e o e e e o e e e o o e e o o e e o e e e o ke e e o e e e ok ke e e o ke e e o ke e e ok e e e ok e e e o e e e ok e e ok ok ok ok ok ok

1f (debug.ge.l.) print *,
ratiot=0.do
ratiol=0.de
do i=1,imax-2,2
ratl=0bs(dell(i+1))/(
1f(ratl.gt.ratiol)then
ratiol=ratl
iratl=i+1 m
end 1f
ratt=0bs(delt(i)/(ntemp(i)+1.d-30))
1f (ratt.gt.ratiot)then
ratiot=ratt
iratt=1i
end if ;
end do &

(nlum(i+1))+1.d-12)

-:** NSCool.f 63% (822,0) (Fortran)

C 2 e o e o o ok o e ok ke ok ke ok ke ok ke ok ok ok ok ke ok ke ok ok ok ok ok ok ok ok ke ok ok ok ok ok ke ok ok ok ok ke ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

C Decide if converged or not:
1f ((ratiot.lt.mratt).and.(ratiol.lt.mratl).and.(ratios.lt.mrats))
then
continue ! Converged ! continue to next time step m
else
goto 2000 I Not converged ! Go back for another iteration
end if }
C 3 e o e o e e o e o e o e o e o e e e e ok e o e ok e ok e ke o e ok e ok e ok e ol e e e e ok e ok e ok e ke e e o e ok e ok e ok e ke o e o ke ok ok ok ok ok A
v

-:** NSCool.f 66% (856,0) (Fortran)

Note: “ratios” was the same thing for
the magnetic field Stoke'’s function:
not here anymore (ratios is set to zero)

Code Structure
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Getting the new dt

instituto de astronomia

unam
® 00 NSCool.f =)
NOW that Iteratlons have Converged, C 3 e e o e e o e e o e e o e o o e o e e o e e o e ke ok e e o e e e e o ol e o e e ok e ke ok e e o e e e e o ok e o ol e o e e ok e ok ok ke ok ok ok ok
NSCool analyzes the process e T e v
and prepareS fOF the neXt tlme Step E This is a delicate part, based on experience and many trials and errors.
¢ It works pretty well, so avoid changing it !
NSCOO-I_ trleS tO Increase E PHILOSOPHY OF TIME STEP CONTROL:
. E (Time of step just finished is "time+dtime", not just time !)
the time step dt c The new "dtime" will be "scale_dt*dtime" with "scale_dt" calculated below. 0
c Allows for 2 different "scale_dt": at earl ime, while relaxing from initial
(:dtime Varlable) aS C conditions, agcu"acy Jics not i'npzﬂtant and gn‘ec can allow for la"ge" ti’nesth:
- C "scale_dt®" and "scale_dtl" are read from the file
dt'ime — Sca']-e_dt*dtime E :gg—zé?}:ﬁ:aZaiq'n:iczﬁc—rzggl);éqgﬁcve increase in "dtime"
. -:** NSCool.f 67% (872,0) (Fortran)
Factors controlling scale_dt: °
1) If T; differs too much from 7T;°, scale_dt is shortened. This uses
_ |77 . Told|
max_dtemp = Max;—1 35 _ < Toldl
/
2) If the resulting scale_dt is too small, i.e., n e Rout
: : scCape noute.
7; differs way too much from 7;°4, the time ' 3rd &pLast Exit
step is recalculated with a shorted dtime.
3) If finding the solutions required more than the desired number of iterations,
scale_dt Is also reduced.
Dany Page NSCool: User’s Guide Code Structure
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instituto de astronomia

unam

Flow diagram of NSCool (bigger)

Initialization

Initial guess of the new

T and L profile at new t

K - - . »‘
cSCape Route l

Get correction to T: 8T
Get correction to L: oL

AV curacy

|()Ug)

Accuracy:

NO are oT and oL small

-

Wednesday, February 10, 2010

T L
enough?

Print out results in
Teff_*.dat & Temp_*.dat

Calculate the

new time step

A

Firn2

1000

NO

Are we
finished?

END
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Up-date 7 & L

unam

Iterations have converged: ntemp(i) and
nlum(i) are the solution 77 and Li. They are
copied to temp(i) and lum(i) so that they
become the T;°d and L9 at next time step.

[The variables “osomething” are so defined
that, at next time step ,they will refer to two time
steps back: they will be used to guess the initial

profiles 77 <=0 and L0 by extrapolating.]

The following sections
calculate a bunch of things
for information purpose.

Dany Page NSCool: User’s Guide
Wednesday, February 10, 2010

® 00

NSCool.f

C e o e o e o ok ok ok ok ok ok

e 2 e o e o o e o e o ok ok ok ke o ke e ok ke ok ke o ke e ok ke ok ke o ke ok ok ke ok ke e ok ke ok ke o ke o ok ok ok ke o ke ok ok ok ok ok ok ok

C ***** End of iterations

C FEEEEERKKKKK

e e e 2 e e o o o e ok e e o ok e e ok ok e e ok e e o ok o ke ok ok e ke ok o ke ok ok o e ok ok e ok ok ok e ok ok ok ok ok ok ok ok ok ok ok

do i=1,imax,?2
otemp(i)=temp(i)
temp(i)=ntemp(i)
orrho(i)=rrho(i)
orad(i)=rad(i)
obar(i)=bar(i)
continue

do 172 i=2,imax-1,2
olum(i)=lum(i)
Tum{i)=nlum(i)
orrho(i)=rrho(i)
orad(i)=rad(i)
obar(i)=bar(i)
continue

-:** NSCool.f 74% (963,0) (Fortran)

® 00 NSCool.f

0

C ++++++++H
C +++++++++++HH
C

¢ Stuff below, till the next +++++ line is only informative and not

c used in the calculations.

-:** NSCool.f 77% (996,0) (Fortran)

(=)

e 2k o o o o ok e e o o e ok o o o e ok ok o o o ok ok ok o ke ok ok ok ok e e ok ok ok ok o ok ok ok ok ok ok ok o ok e ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

Cc ***** (Calculate the neutrino luminosity and heating: **¥¥*¥¥xi*xxdxxx
C e e e o o o e e e ok ok o e e e ok ok o o e e ok ok o o e e ok ok ok o e e ke ok ok o e e ke ok ok ok o e e ok ok o o e e ok ok ok o e e ok ok ok o ok ke ok ok ok ok ok

-:** NSCool.f 79% (1038,0) (Fortran)

k ***** CALCULATE THE INTEGRATED NEUTRINO LUMINOSITIES: **¥¥¥dkkiikkik*
C Note: lnu_tot, calculated from gnu(i), is the garanteed total

C neutrino luminosity. The other ones are only informative.

-:** NSCool.f 81% (1057,0) (Fortran)

k ***** CALCULATE THE INTEGRATED SPECIFIC HEATS: *¥¥¥dkikkikikkikikrtrs
C cv_tot_all, calculated from cv(i), is the garanteed total

C specific heat. The other ones are only informative.

-:** NSCool.f 82% (1078,0) (Fortran)

I e B B B A o L e o2 o
k I I o 2 o S
I A B B B o o o
-:** NSCool.f 85% (1117,0) (Fortran)

«» «» «»S

«» &

Code Structure
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instituto de astronomia

unam

Print out results in the files
“Teff_*.dat” and “Temp_*.dat”
[all done in file NSCool_PRINT.1inc. f]

Update the time variable

That o all Follos !

® OO0 NSCool.f ()

ke ok ke o ok 3 ok 3 ok ok ok ok ok ok 3 ok o ok ok ok ok 3k ok ok ok o ok ok ok ok ok ok o ok ok ok ok ok ok 3k ok o ok ke ok ok 3k ok o ok ok ok ok ok ok ok ok o ok ok ok ok ok ok o ok ok ok ok

e e e o e o o e o e o e o ok o o ok ok ok ok pwlnt Out wesults e e e o e o e e o e o o e o e e e e ok e o ke o ok e ok ok ok ok ok

NN

e 2 e o e e o e o e o ok e ok e o ok ke o e o ok ke ok e o ok ke ok e o ok e ok ke o ke ke ok ke o ke ke ok ke o ke ok ke o ok ke ok e o ke ok e o ok ok ok ok ok ok ok ok m

INCLUDE -
v

-:** NSCool.f 86% (1121,0) (Fortran)

e o e o e e o e o e o ok ke o e o ok ke o e o ok ke ok ke ok ok ke ok e o ok e ok ke ok ok ke ok ke ok ok ke ok ke o ke ke ok e o ok ok e ok ok ke ok ke o ok ok ok ok ok ok ok ok

3 2k 2k ok ok ok ok ok ok ok ok ok ok ok ok ok CALCULATE THE NEW TIME STEP 2 2k 2 2k ok o o o o e o o ok ok ok ok ok ok ok ok ok ok

e 2 e o e o e e o e o e e o e o e e o e e e e o e o ke e o e o e e o e o e e o e o e e o e o e e ok e o ke e ok e ok e e ok e ok e o ok ok ok ok ok ok

NTT N

time=time+dtime @

odtime=dtime

dtime=nin(scale_dt*dtime,dtlimit) A
v

-:** NSCool.f 91% (1197,0) (Fortran)

Follow two sections to control dtime in case of accretion: more on this later !

Dany Page NSCool: User’s Guide
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00 [ | NSCool.f )

C 3 2 e o e o e o e e ok e ok e ke o ke ok ke ke e e ok ke ok e ke ok ke ok ke ke o ke ok ke ok o ke ok ke ok e ke ok e ok o ke ok ke ok e ke ok ke ok ke ke o ke ok ok ok ok ok ok ok ok

1f (time/year.ge.timemax) goto
1f ((sign_l*teffective).lt.tempmin) goto

2 o e o o e o ok ok ok ok ok ke ok ok ke ok ok ke ok ok ok ok ok ok ke ok ok ke ok ok ok ok ok ok ke ok ok ke ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

continue ! This is the "end do' for the main time integration
3 e e 2 e e e o e e o e e o e e e o e e ok e e o ke e e ok e e o e e ok e e o ok e e ok e e ok ke e o ke e o ok e e ok e e ok ke e o ok e o ok ke ok ok ok ok

c
C 3 e o o e o e o o ok ok ke ok e ok ok ke ok ke ok o ke ok ke ok e ke ok ke ok ok ok ok ke ok ke ok ok ke ok ke ok ok ke ok ke ok ke ok ok ke ok ke ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok O
po98 continue ! Jump here if time > timemax

C 3 o e o o e o ok e ke ok ok ke o ok ke ok ok ke ke ok ke ke o ok ke ok ok ke ok ok ke ke ok ok ke ok ok ke ok ok ke ok ok ok ke ok ok ok ok ok ke ok ok ke ok ok ok ok ok ok ke ok ok ok ok ok ok ok v

-:-- NSCool.f 97% (1286,0) (Fortran)

T —
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