NSCool User’s guide

Structure of the Code

Dany Page

Instituto de Astronomia
Universidad Nacional Auténoma de México

The problem to be solved

The equations to be solved are described in the NSCool Guide 1 Introduction. They are:
1) Structure of the star: the TOV equations.
2) Thermal evolution of the star.

How to use the TOV solver is described in NSCool Guide 3 TOV. Meanwhile, several
pre-built stars are available in the directory TOV/Profile.

For the thermal evolution equations, the star is cut at an outer boundary, with radius r,
and density p» (typically p» = 1070 gm cm3): at p > p» matter is strongly degenerate and
thus the structure of the star does not change with time:

The star’s structure is calculated before the cooling and not modified thereafter.

(Almost: NSCool allows for small density changes in the outer part of the star, if required)

Only the energy balance and transport equations are solved as a function of time:

- two first order partial differential equations to get L(r,t) and T(r,t) with
- aninitial L and T profile: L(r,t=0) and T(r,t=0)
- two boundary conditions, at =0 and r=r».

Note: the heat transport is a diffusion equation and numerically unstable if treated improperly. Numerical
stability is achieved using an implicit scheme (“Henyey scheme”) similar to the textbook Crank-Nicholson.

Wednesday, February 10, 2010

Rewriting the thermal evolution equations

instituto de astronomia

The equations to solve:

Energy balance Energy transport
d(Le*®) 4rr?e® (dT &) d(Te®) 1 Le®
= — Cv—F + v — = —<-
dr V1—2Gm/c2r dt © (@ = Qn) dr A 42\ /1 —2Gm/c2r

Use red-shifted functions: 7 =e®T and L = 2L

d the L ' dinat b b da = 4nr’dlng = Amrins dr
and the Lagrangian coordinate a (baryon number) = B \/1 —oGm/cer
to get: %:_&d_T_eNQV_Qh or d_7':_e2¢QV_Q”_”_B%

da ng dt ng dt C, C, da
dT 1 L dT
and: - =_= _ 2v2, o 9
da A\ (4mr?)2ng e® or L A 4mr7) ng € da
which we write as: d_T —F (T, % and L£L=G|T, d_T
dt da da

(the T dependance of F and G comes from Q., Qx, Cv, and A)

3
Wednesday, February 10, 2010

Finite differencing the equations

For finite differencing these equations one divides the star into shells, at radii
ro=0, r1, ..., i, ... max. L, being a flux, is defined at the shell interfaces while T is

understood as the average in the interior of each shell: it is common to write then

Liand Ti+» to emphasize this.
Since fortran does not like loop indices with half integer values | used:

Lisdefinedati=0, 2, 4, ..., imax-1

Tis defined ati=1, 3, 5, ... , imax

y,
dT dL o dTi dL . dl| Liy1—Li
dt F(T' da) Todt F(" da ,) with 43 . daj_1 +da
fori=1,3, 5, ..
B dT oA dT . - T+ T dT| Tiv1—Ti-1
L=G (T, da> > Li=G (TI,, 1 /) with T, = > and da | ~dar 1+ da
fori=2 4,6, ...

where dajis the number of baryons between ri.1 and r;

Wednesday, February 10, 2010

Stepping forward in time

Assuming we know the profiles of 7 and £ at time t: 7 °ld and Lo!d
we can write for 7 and £ at time t’=t+dft:

old
JT:F<79£> —+'T:Tm+dpF<Tmfw)

Explicit dt da da
scheme old
L—GCﬁﬂI> — E-G(ﬁ“ﬂT)
da da

this is very easy to integrate BUT:
it is numerically unstable unless dt is very small (Courant dixit)

Better: evaluate F and G at the new values of 7 and £:

d—T:F(T,%) s T:To'd+dt-/—‘<7',%>
Implicit dt da da
scheme
EzG(T,d—T> — £:G(T,d—T>
da da

this is numerically stable (and allows large dt) BUT:
extracting the new 7 and £ is tough

(particularly 7 because it is inside Qv, Qn, Cv, and A)

Wednesday, February 10, 2010

Solving the implicit equations by iterations

instituto de astronomia

Assuming we know the profiles of T and £ at time t: 7°d and £o'd

we can find the new 7 and £ at time t’=t+dt by successive approximations
(TO, LO) — (TWD, L) — (TP, LD — (TP, LB)) - .

As an initial guess for (7¢9), £(9) one can take (7(®, £(0)) = (7 old rold)
or extrapolate from (‘7 °l4, f°ld) and the previous values (‘7 °lder solder)

Evaluate the functions F and G with 7:(k and £;{ to obtain 7; 1 gnd £; k+1:
(k) (K)
T(k+1) - Told +dt-F (T(k) d_L) £(k+1) —G <T<-k) d_,T)

"' da da
then plug back 7:k*1) and £i 1 into F and G to obtain 7:¢k+2) and L£i(k+2)
and so on until some K when T; KD = 7K gnd £;K+D) = £,

(All T:K and £: K are successive approximations at the same time t’. T:°'9 does not change, it is at time t !)

i

As long as the initial guess (7(9, £(9) is not too far from the solution
the method will converge to the solution (maybe in 10 iterations ?)

Wednesday, February 10, 2010

Improvement: the Henyey scheme

Instead of using brute force iterations, the Henyey
scheme use the Newton-Raphson method The Newton method
for solving multi-dimensional equations. “ to solve f(x)=0

f(x)

T—TM—dt - F(T,9%)=0
Write the equations as:
L-G(T.4L) =0

or, in N dimensional notation:

c o (X) o
() (200) /

§.2 and P(X) = f(Xk41) =0 <
’ F(x) + /() - (X — x) = 0

\) K :) = X1 = X — [(0] F(x)

d(X)=0 with X=

and the Newton-Raphson iteration procedure is: ~ X(kT1) = x(K) — [Dpp (X))~ . o(XK)
where [D®(X)] is the NxN derivative matrix of ®(X) and [D®(X)]"! the inverse matrix.

This involves calculating T derivatives of Q,, Qn, Cy, and A and inverting a large matrix.
Fortunately this matrix is tri-diagonal and its inversion is straightforward !

One still have to preform iterations but the convergence can be much faster than brute force.

7
Wednesday, February 10, 2010

Checking for iteration convergence
and time step control

T (k) o T (kD) = g2 (k) 4§77 (k) [i=1, 3, 5, ...]
Li0O = iD= £,00 4 50,00 [i=0, 2, 4, ..]

Convergence will be considered to have been achieved when

67 Jog
Maxj=13s,... G | <er and Maxi—opa.. | —y | <eL
T; L

The Newton-Raphson iterations go as:

Values of €7 and &, of the order of 10-1° can be reached in 4 - 6 iterations.
However, if 7:(9) and/or £i(% are too far away from the solution, iterations go on forever:

the loop is exited, the time step dt is shortened and the iteration procedure restarted.

(It is not unusual to see dt being cut many times, e.g., when a phase transition (superfluidity/superconductivity) occurs

at some point in the star. Sometimes things go real bad (dt — almost zero): “Ctrl-C” is the only solution, and figure
out what's happening.)

Time step control: at every new time step dt is increased: dt = dt (1+a) (a ~0.2) but:
- if Newton-Raphson converged in << 5 steps a larger a is chosen
- if Newton-Raphson needed > 10 steps to converge a smaller a is chosen

- if Tand/or £ changed too much (from 7 °d and/or £°9) a smaller a is chosen,
while if they changed ways too much, the time step is recalculated with a smaller dt.

Wednesday, February 10, 2010

The boundary conditions

Inner boundary condition: L(r=0) =0 or Li=0=0

This is easily implemented by initially starting with Li-0<=® = 0
and imposing 8Li-0%) = 0 at every iteration.

Outer boundary condition (see NSCool_Guide_1_Introduction):
Itis (at r =r): L(rp) = 4mR%0s[Te(Tp)]* with T, =T(r)

where (in present notations): L(rp) = €2%(mac?) L(jmax-1) and T(rp) = € ®lmad T{imax)
and Te(Tp) is a function (a “Te-Tp” relationship) obtained from some envelope model.

This is implemented as part of the inversion of the matrix [D®(X)]

Add more details about this !

Wednesday, February 10, 2010

instituto de astronomia

Flow diagram of NSCool

unam

/ Read Cool_*.in /
Read controle files

| |
| |
| |
| |
|

Initialization > |
| l |
| |
| |
| |
| |
| |
|

Initialize some stuff

l

Define the initial
T and L profiles at t=0

Initial guess of the new Calculate the

|
Time integration -

5 |
E T and L profile at new t | new time step |
¥ l E ! |
§ i |
| ; Get correction to T: 8T !
] : Get correction to L: oL | | |
. . . B
with iterations . NS urady : |
: , |
to reach accuracy X : |
. . : NO 8’zlﬁccur%iy: '
N T & L prOf”eS | E are 95 and G small | |
: | ! enough? | |
at each time step X , |
| YES NO |
Print out results in A YES
: Teff_*.dat & Temp_*.dat finri:hvgg? END

Notice: NSCool contains an extra “model loop” to run several cooling models from the same Cool_*.1n file.

Wednesday, February 10, 2010

instituto de astronomia

unam

Flow diagram of NSCool (bigger)

Initialization

Initial guess of the new

T and L profile at new t

K - - . »‘
cSCape Route l

Get correction to T: 8T
Get correction to L: oL

AV curacy

|()Ug)

Accuracy:

NO are oT and oL small

-

Wednesday, February 10, 2010

T L
enough?

Print out results in
Teff_*.dat & Temp_*.dat

Calculate the

new time step

A

Firn2

1000

NO

Are we
finished?

END

instituto de astronomia

Reading the

unam

NSCool. f file

® 00 NSCool.f

The next slides describe the structure of
NSCool.f:

hnglamantatiun uf ha
praalous How diagram

There are many sections of just screen
print out (unimportant for now).
They are all marked the same way
between two line of:

end if
end 1f

call accretion_rate(time+dtime,dtime,m_dot)
call accretion_velocity(m_dot)

1f (pscreen.ge.2) then
C 1f (pscreen.eq.3) read(5,*)
read(5,*)
write(6,*)
print

print ,istep,

print

print R
,(time+dtime)/year,
,dtime/year,
,dtime/odtime
print *
1f (chtemp.eq.1.) then
print R
,mdtemp,
,rrho(icht), ,temp(icht)
end if]
1t (chstoke.eq.1.) then
print
,mdstoke,
,rrho(ichs), ,stoke(ichs)
end if
1f (chtrial.eq.1l) then
print

end 1f
end 1if

LR LR L LR LR L L L L

1f (debug.ge.1l.) print *,'(

coeff_int=0. %\ !
-:** NSCoolf 354(490,13

H,TTE 3 ‘ =
s nuniuge |

[| NSCool.f

600

Lines like these would include
commands for magnetic field w——l)
evolutions (not used anymore).

c BEBBBBEBBBBBBEBBEBBEBEBBBBEBBBBBEBBBBBBB
C INCLUDE 'Bfield/Bfield_3.inc.f’
c BEBBBBEBEBBBBEBBEEBEBEBBBBEBEBBEBEBBBBB

:-- NSCool.f 38% (476,22) (Fortran)

Dany Page NSCool: User’s Guide

Wednesday, February 10, 2010

Code Structure

UOITrog trassUra fimregrramupe;

Led ey i

TOCRTITUCIT il SITAIFCITAITUC

LETCR LT Ol

TMRUTSGECOUCKC d1IYC LITCITR,

N

Code
variable

time
dtime
temp(i)
ntemp(i)
dtemp(i)
delt(i)
lum(i)
nlum(i)
dlum(i)
dell(i)

Wednesday, February 10, 2010

Essential variables in NSCool . f

t

dt

fI{old
ffiCk)
d7:k)/da
WSS
£iold

L; (K
dLi(/da
&Lk

Code

variable The new time is

istep time index t’ =t+C_jt

itrial iteration index but there is no
variable for t’

Code

variable

rad(i) r

rrho(i) P

debar(i) da

|3

wum, I e

instituto de astronomia

unam

Beginning of the loop:

This runs through the
various models listed in

Cool_*.in,

‘model” loop

®00 NSCool.f =)

C 2 2 e e o e e o o o o ok ok ok ok ok ok ok ok o e e ke ke ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ke ok ke ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok
C 4 2 e e e o e o o o o ok ok ok ok ok ok ok ok o e e e ke ok ok ke ok ok ok ok ok ok ok ok ok ok o ok ok ke e e ke ke ok
C 3 2 e e o e e o o o ok ok ok ok ok ok ok ok ok ok ok ok LET'S GO ! 2 2k 2k e o e o o o o o o o ok ok ok ok ok ok ok ok ok ok ok ok ok
C 2 2 e e e e e e o o o ok ok ok ok ok ok ok ok o e o e ke ke ke ok ke ok ok ok ok ok ok ok ok ok ke ok o ke e ke ke ke ok ok ok ok ok ok ok ok ok ok ok ok o ko ok ok ok ok ok ok ok ok ok m

C e 2 e e e e e e o o e ok ok ok ok ok ok ok ok o o e e ke e ok ok ok ok ok ok ok ok ok ok ok ok ok e ke e e ke ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok

and will cool all of them,
one after the other.

End of the loop:

Close the output files

(Teff_*.dat & Temp_*.dat) -

i_model=0

C 2 2 e e e e e e o o e o ok ok ok ok ok ok ok e e e e ke ke ok ke ke ok ok ok ok ok ok ok ok ok ok ke ke ke ke ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok
C 2 2 e e e e e e e o e ok ok ok ok ok ok ok ok o e e e ke ke ok ke ok ok ok ok ok ok ok ok ok ok ok ke ke ke ke ke ok ok ok ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok
C FHEEEEAEREE®X BEGINNING OF A NEW MODEL CALCULATION skt
C 4 2 e e e e o o e e e o ok ok ok ok ok ok ke e e e e ke ke o e ke ok ok ok ok ok ok ok ok ok ke e ke e e ke ke ok ok ok ok ok ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok

C 4 e e e e e e e e o e o ok ok ok ok ok ke ok e e e e ke ke e ke ok ok ok ok ok ok ok ok ok ke ke e e ke e e ke ke ok ok ok ok ok ok ok ok ok ok ok ok ok ke o ok ok ok ok ok ok ok ok ok

and go to next model.

Now, it's really finished.
Close the master input file
(Cool_*.1in)

Dany Page NSCool: User’s Guide
Wednesday, February 10, 2010

P . a
1234 continue
\l O\
i_model=1i_model+1 \
idt=1
htot=0.0
contraction=0.d@)
A
C e o o e e o o e ok o e o o ok e ok ok ok e o o e ok o ok e e ok ok ke o ok e ok ok ok e o ok ke e ok ok e ok ok ok e ok ok ke ke ok ok e ok ok ke ke o ok e ok ok ok ok ok ok ok v
-:** NSCool.f 12% (171,0) (Fortran)
¢ Close the output file for the present model: *¥¥¥**¥kkkkkkkkEEEAAANN*
close(unit=10,status= D)
close(unit=19,status= D)
¢ Go back to the beginning: do the next model listed in the "Input file®
goto 1234
’ ‘------------------'
C e e ok e e o e o e e ok e o o e o o e ok e ok e e ok e e ok e ok o e ok e e ok e ok o e ok e ol ok e ok o e ok e ke ok e ok e e ok o ke ok e ok o e ok ok ok ok ok ok
9997 continue ! This is the real end of it !
C e e ok e o o e o e e o e o o e ok o e ok e ok e e ok e e ok e ok e e ok o e o e ok o e ok o ol ok e ok o e ok e ke ok e ok o e ok e ok ok e ok o e ok ok ok ok ok ok
close(unit=15,status= D]
p"int *,
end
C e e ok e o o e o e e ok e ok ok e ok ok o ok e ok o e ok o ke ok ke ok o e ok ok ke ok e ok ok e ok ok ok ok ke ok ok e ok o ok ok e ok o e ok o ok ok e ok o ke ok ok ok ok ok ok
C e e ok e o o e ok o e ok e o o e ok ok e ok e ok o e ok ok ke ok ke ok o e ok ke ol ok e ok ok e ok o ol ok ke ok o e ok ke ok ok e ok ok e ok o ok ok e ok o ke ok ok ok ok ok ok
C e e ok e o o e ok o e ok e o o e ok ok ke ok e ok e e ok ke ke ok ke ok o e ok ok ke ok e ok ok ke ok o ol ok ke ok ok e ok ok ke ok e ok o e ok o ke ok e ok o ke ok ok ok ok ok ok m
C e e ok e o o e ok o e ok e o o e ok ok ok ok e ok o e ok ok ok ok ke ok ok e ok ok ke ok ke ok ok ke ok ok ok ok ke ok o ke ok ok ke ok e ok o e ok o ok ok e ok o ke ok ok ok ok ok ok ;
C e e ok e o o e o o e ok e ok o e ok ok ok ok e ok o e ok ok ok ok ke ok ok e ok ok ke ok e ok ok e ok o ok ok ke ok o e ok o ok ok e ok o e ok ok ok ok e ok o ke ok ok ok ok ok ok v

-:** NSCool.f 98% (1275,15) (Fortran)

—
Code Structure

|4

The “Input File” (Cool_*.1in)

unam

If just beginning (i_model=1):

ask for the master input file
(Cool_*.in) and open it.

® 00 NSCool.f

then:
read the cooling model files

Dany Page NSCool: User’s Guide

Wednesday, February 10, 2010

(a]

C
C
C

4 o 2k o e e o e o e o e o e e o e o e o e o o o ke o ke o e o e o ke o ke o ke e ke ok ke ok ke o ke o ok ko ke ok ke o ke ok ok ke ok ok ok ok ok ok ok ok ok

e o o o o ok ok o ok ok ok ok ok ok ok ok ok GET INPUT MODEL FILES e ok e o o ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok

0 e 24 e e e o e o e e e e e e e e e e e e e o o e o e e ke e e e ke e e e e e e e e e e e e ke e ke o e e ke o e ko ke ok ke o ok ok ok ok ok ok

k%

* k%

k%

1f (i_model.eq.1l) then
Choose between two input: e o o e e e e e e ok ok ok ok ok ok o o ok e e e o ke ok ok ok ok ok ok ok o o ok ok ok ok ok ok

Ask for the input File e 2 e o ke e ke o e o o e o ke e ke o e e e e o ke o ke o ke o ok ok ok ke o ok ok ok ok ok ok ok ok

write(6,*)

read(5,*)filename

Can add here the directory where "Cool_*.in" is:
filename="Mode! //filename

Op define it Completely here: e 2 o e e e o e o ok o e o ok ok e e ke ok e ok ok ok e o ok ok o ok ok ok ok ok ok
filename="Model_1/Cool_Try.in'

write(6,*)'Using as input: ',filename
C**********#****#****#****#****#****#****#******#****#*********#****#**
open(unit=15,file=filename,status="01d")
else
read(15,*,end=9997,err=9997)
end if
read(15, *,end-:::ﬁ err=9997)version
if (version.eq. STR') then
istrange=1
else
istrange=0
end if

C

C

* kK

* k%

BASIC MODEL FILES: e 2 e o e e o e o e o e e o e ok e e o e ok e ok e e o e ok e ol e e ok e ok e ke o e ok ok ok ok ok ok ok
read(15,*,end=9997, err=9997)
read(15,*,end=
read(15,*,end=
read(15,*,end=9997, e"”—JJ‘ﬂ)f_proflle
OTHER MODEL FILES. e e e e e e e e e e e e e e e e e e o o ok e e e o e e e e e e ke ok ok ke ke ok e o o ok ok ok ok ok ok
read(15,*,end=9997,
read(15,*,end= 7
read(15,*,end=
read(15,*,end=
read(15,*,end=
read(15,*,end= 997)f_Conduct
read(15,*,end=9997 9997)f _Heat
read(15,*,end=9997, >
read(15,*,end=9997, e"”-"‘j)f_ACCPetlon
i1f (istrange.eq.1) then
read(15,*,end=9997,err=9997)f_Strange

7,err=99

end if
C * kK OUTPUT FILES: e e e e o ok ok ok ok ok o o o e e ke e e ok ok ok ok ok ok o ok ok e e ok ke ok ok ok ok ok ok ok o o ok ok ok ok ok ok ok ok ok ok ok
read(15,*)
read(15,*,end=9997,err=9997)f_1i
read(15,*,end= 7 g)f_Teff

read(15,*,end=9997, J)f_Temp
read(15,*,end=9997,err=9997)f_Star

C**

-:** NSCool.f 14% (203,56) (Fortran)

Code Structure

|5

instituto de astronomia

Initialization (1)

unam

® 00 ~ NSCool.f =

e e e e o o e e o ok e e o ok o e ok ok ok e e ke ok ok o e ok ok ok e ke ok ok ok e ke ok ok ok ke ok ok ok e ok ke ok ok o ke ok ok ok o ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok
e o e o ok o o o ok ok ok ok ok ok ok ok ok READ THE ABOVE FILES 3 2 e o o ok o o ok ok ok ok ok ok ok ok ok ok ok ok ok ok

Open and read the model ﬁles l sk o o e e o o e o o o e o o o ke o o e ok o o e o o o ok ok o o ok o o e ok o o ke ok o o ok ok o o ok o o o ok o o ok ok o o ok ok o ook ok o ok ok ok ok ok ok
(the ones listed in Cool_*.1in) ' INCLUDE "NSCool_READ.inc.f'
[aII this iS in NSCOO-I__READ o -i_nc A -F] e e 2 e o e o e o e o e e e e o e o e o e o e o e ke e e o e e e o e o e ok e e e ke o e o e o e o e ok e ok o ke ok e ok e ok e ok e ok o ok ok ok ok ok

e o e o ok o o o ok ok ok ok ok ok ok ok ok INITIALIZATION 3 2 e o o ok o o ok ok ok ok ok ok ok ok ok ok ok ok ok ok
3 e e e o 2 e e e e e e e o e e e e o e e e e ok e e e ok ok e e ke ok ok e e e ok e e e ol ok e e e ke ok e e ke ok ok e e e ok ok o e ke ok ok o ok ok ok ok ok

if (debug.ge.l.) print *,'Initializing’

3 e e e o 2 e e e e e e e o e e e e o e e e e ok e e e ok ok e e ke ok ok e e e ok e e e ol ok e e e ke ok e e ke ok ok e e e ok ok o e ke ok ok o ok ok ok ok ok

l *** Get the time independent pieces Of phySiCs: *¥FFFEEIddAAEXIXEREXX

Call a bunCh Of SUbrOUtIneS e 2 e e o o e e o o e e o e e o ok e ke o ok e e ok e ke o ok e e o ke ke ok ok ke e o ke e ok e ke o ok e ke ok ke e o ok e ke o ok e ok ok e ke ok ok ok ok ok ok ok
[more on this Iater] get_core_chemistry MUST be called BEFORE get_crust_chemistry

-:** NSCool.f 20% (259,0) (Fortran)

" NSCool.f

C e e e e o o e e o ok e e o ok o e ok ok ok e e ke ok ok o e ok ok ok e ke ok ok ok e ke ok ok ok ke ok ok ok e ok ke ok ok o ke ok ok ok o ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok

Cc ***** (Calculate the T-independent coefficients ***¥FFEkkEEEEEEEEEEREX
C e o o e o o e e o ok e e ok ke e o ok e ke o ok e o ok e ke o ok e e ok ol ke o ok e ke o ok e o ok e ke o ok e ke ok ke e o ok e ke o ok e ok ok ke ok ok ok ok ok ok ok ok

Calculate some pieces of !
physics (as, e.g., the €®’s,...)

if (debug.ge.l.) print *,'Calculating T-independent coeff.’

-:** NSCool.f 23% (287,31) (Fortran)

Dany Page NSCool: User’s Guide Code Structure 16
Wednesday, February 10, 2010

instituto de astronomia

unam

Initialization (2)

Call some more subroutines l

[more on this later]

Calculate the initial (t=0) |

T & L profiles

Open the output files !
[all this is in NSCool_OPEN.inc. f]

Dany Page
Wednesday, February 10, 2010

NSCool: User’s G

® 00 NSCool.f

C e o o e e o e e o o e e o o e e o e e o ok e ke o ke e e o e e o ok e e ok e e ok ok e ke o ke e e ok e e o ok e ke ok ke e ok ok e e o ke e ok ok ok ok ok ok ok
C * %k %k Inltlallze some more Stuff: e 2 o o o o ok ok ok ok ok ok o ok ok ok ok o ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok

C e e e e e o e e e o e e e e e e ke o ok e e ke ok ok e e ok ok o e ke ok ok o e e ok ke e e ke ok ok e e ke ok e e ke ke ok e e ke ok ke ok e ke ok ke o ok ok ok ok ok ok

if (i_heat_deep_crust.eq.1) thern

call initialize_heating_deep_crust(f_heat_deep_crust)
end if

1 (i_heat_thermonuclear.eq.1l) then

call initialize_heating_thermonuclear(

-:** NSCool.f 25%(316,38) (Fortran)

3 2 e o o ok o o o ok o e o ok ok o ke ok ok ok o ke ok ok ok o ok ok ok ok ke ke ok ok ok ok ke ok ok o ok ok ok ok ok ke ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

*¥*xxxxxx* Calculate the initial Temp and Lum profiles *****kkkkkkrrrx
e o e e o e e o o e e o o e e o e e o o e ke o ok e e o e ke o ok e ke o e e o ok e e o ke e e ok ke e o ok e e ok e e o ok e e o ke e o ok ke ok ok ok ok ok

INCLUDE "NSCool_INIT_TPROF.1inc.f’

BEBBBBEBBEBEEBEEBBEEEBEEEBEBBEBEBEBBBBBEBB
INCLUDE 'Bfield/Bfield_2.inc.f’
BEBBBEBBEBBEEBEEBBEBEEBEEEBEEBEBEEBEBBBBBEB

e e o e o e o e ok e ok o e o ke ok ke ok ke ok ke ok o ok ok ke ok ke ok ke ok ke ok ke ok o ke ok ke ok ke ok ke ok ke ok ke ok ok ok o ok ok ke ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok

e 2 e e e o o o e ok ok o ok ok ok ok ok ok 0pen print out files 4 e e e e o e o e e o e ok o e e e e ok ok o o ok ok ok ok ok ok ok

3 2 e o o ok o o o ok o e o ok ok o ke ok ok ok o ke ok ok ok o ok ok ok ok ke ke ok ok ok ok ke ok ok o ok ok ok ok ok ke ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

INCLUDE 'NSCool_OPEN.inc.f’

C e e o e o e o e ok e ok o e o ke ok ke ok ke ok ke ok o ok ok ke ok ke ok ke ok ke ok ke ok o ke ok ke ok ke ok ke ok ke ok ke ok ok ok o ok ok ke ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok

C 3 2 e e e o e e e o e e e o ok e e ke ok o e e e o ok e e ok ok ok e e ke ok e e ke ke ok e e ke ol ke o e ke ok ke e e e ok e e e ke ok e o ke ok ok o ok ok ok ok ok

-:** NSCool.f 28%(361,0) (Fortran)

)

(1

instituto de astronomia

unam

Beginning of the loop:
The time stepping loop

(after some little set-up,
as resetting the time !)

End of the loop:

® 00 ~ NSCool.f

C e e 2 e e e e o e e e o e o e o e e e e e ke e ke e ke e ke e e ke e ke e o ke ok e e e ok e ok e ke ol ok e ke e ke e ke ok ok ke ke ok ok ok ok ok ko

1f (time/year.ge.timemax) goto 9998
1f ((sign_l*teffective).lt.tempmin) goto 9998

C ok o e o ok ok o e ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ke o ok ok i ot sk o ok ok ok o ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

! This is the “end do' for the main time integration
C e 2 2 o e o o ok o ok ok o ok ol ok ol ol i S o e ot ke ofe ke ke ke ke ke ok ok ok ok ok ok

9999 continue

C e e e o e e e o e e e o e e e ok e e ok o e e ke ke e e ke e e e ke ok e e ok ok e ke e ok e ke ok ok e ke ol ok e ke ok ok e ke ok ke o ke ke ok ke ok oR b

9998 continue I Jump here if time > timemax

C e 2 o o 2k o o o ke o o o ke ok o o ok ok o ke ke ok ok ok ok ok ok ok ke ok ok ke ke ok

® OO0

Nn N nN0nNnnNn

Nn=n

-:** NSCool.f

The “time loop”

| NSCool.f

3 2k 2 e e e e ok ok e e e e o ok e e e e e e ok e o e e e e ok ke o e e ke ok ok ke e e e ke ke ok ok ok e ke e ke ok ok ok e e ke ke ok ok ok ok o ok ok ok ok ok ok ok ok
2 2k o e o o o ok ok o o ke ok ok ok ok o ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ke ok

COOLING

3 e e e o o e ok ok ke e e e o o o e e ok ok ke ok o ok e ok e e ok ke ok ke ok o ok ok e e e ok ok ke ok ok ok ok ok e ok ke ke ok ok ke ok o ok ok ok ok ok ok ok ok ok ok ok ok

3 2k e e o o o ok ok o o ok ok ok ok ok o ok ok ok ok ok ok ok e e e o e ok ok e e o o ok ok ok e o ok ok ok ok ok ok ok ok ok ok ok ok

3 2k 2 e o o o ok ok e o ok o ok ok ok e e ok o ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ke ke ok ok ok ok ok o ke ke ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

3 2k 2 e o o o ok ok o ok o ok ok ok ok ok ke ok ok ok ok ok ok ke ok ok ok ok ok ok ok ke ok ok ok ok ok ok ke ok ok ok ok ok ok ke ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

time=timed | Initialize the time

icycle=0 ! Initialize the counter for accretion cycles
3 e o e e o e o e e o e e e e o e e o e ok e ke o ke ok e ke o ke ok ke ke o ke ok e ke ok ke ok ke ke ok e ok e ke ok e ok ok ke ok ke ok o ke ok ok ok ok ke ok ok ok ok ok ok

3 2k 2 e o o o ok ok o o ok o ok ok ok o ke ke ok ok ok ok ok ok ok ok ok ok ok ok o ke ok ok ok ok ok ke ke ok ok ok ok ok ke ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

itprint=0 ! To print out the initial T and L profiles

itprint=1 ! To print out only at the required times
e o o o o o o o o o o o o e e ok ok ke ok ok ok ok ok ok ok ok o ok ok ok ok o e ke ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok e ke ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

3 e e o o ok ok o o e o ok ok ke o ke ke ok ok ok ok o ke ke ok ok ok ok ok ke ke ok ok ok ok ok ke ke ke ok ok ok o ke ke ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

THIS IS THE MAIN TIME LOOP:
do 9999 istep=1,istepmax

e e e e e e e ok ok ke o e e e e e o ok ok ok ke ok ke ke e ek o o ok ok ok ok ok ok ok 3 3 e e e e o o ok ok ok ok ok ok o o ok ok ok ok ok

29% (386,0) Fortran)

0 It stops when you run

c Close the output file for the present model: *¥*¥*¥d¥idddAAANEXEXEXEX v ()ljt ()f tIrT1€3 55t€3F355 or

-:** NSCool.f 97% (1272,0) (Fortran)

you run out of time

Dany page NSCool: User’s Guide

Wednesday, February 10, 2010

Code Structure

18

)

instituto de astronomia

unam

=\ Prepare for iterations

®0O0 - | NSCool.f)

—

C *%% Accretion rate: stk ook ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok
icycle_old=icycle
1f ((i_acc.eq.1).or.(i_acc.eq.2)) then
1f (time+dtime.ge.t_acc®) then
icycle=int((time+dtime-t_acc®)/t_accl)+1l m
t_burst= time+dtime -t_acc® - “loot(icycle-1)*t_accl

CaICUIate the ! t_burst = time since beginning of burst

. e?se
| accretlo_n rate | Doreeca. 0
(in case there is accretion) end 1F

call accretion_rate(time+dtime,dtime,m_dot)

call accretion_velocity(m_dot) -
C o e o o e o o e o o e ok ok ok ok ok ok ok ok ok ok ok o e ok ok ke ok o ke ok o e ok ok e ok ok ke ok ok ok ok ok ke ok ok ok ke ok ok ke ok o ke ok o e ok o e ok ok ok ok ok ok ok ok A

-:** NSCool.f 32% (418,0) (Fortran)

| NSCool.f

C 30 e 2k e 2k e ke o ke e e o e o e o e o e ok e ke e e o ke e ke o ke o e ok e ok e ok e ok e ok e ke ok ke e b o ke ke ke o e ok e ok ok o ke o ok o ok ok ok ok ok ok

Cc ***** (Calculate ntemp & nlum for first guess ***FFF¥iikkiikkiirriirr*
€ A R R R R R R R R R R R oo oo o o

if (debug.ge.l.) print *,'Guessing NLum & NTemp'

coeff_int=0.8d0

do i=1,imax,2 m
ntemp(i)=temp(i)+coeff_int*(temp(i)-otemp(i))*dtime/odtime

end do

dtemp(©)=0.d0

Calcu Iatgj(:llj i) fl rSt g ue(?(so) dZtl;sgr)n:)((;\iéfip(ul)—ntemp(i—1))/(debar‘(i)+debar‘(i+l))
profiles: 7T{*=% and Li*=

end do

nlum(@)=0.

do i=2,imax-1,2

nlum(i)=lum(i)+coeff_int*(lum(i)-olum(i))*dtime/odtime

end do

do i=1,imax-2,2

dlum(i)=(nlum(i+1)-nlum(i-1))/(debar(i)+debar(i+l))

end do v
-:** NSCool.f 36% (464,0) (Fortran)

>

Dany Page NSCool: User’s Guide Code Structure
Wednesday, February 10, 2010

The Newton-Raphson loop

unam

Reset the iteration

loop counter:

(this is also a branch
point in case of failure)

Beginning of the iteration loop:

Increment the
iteration counter

l

Escape Route: Too many iterations:
First Exit it is not converging

End of the iteration loop:

» Converged:
go to next time step.

* Not converged:

go to next iteration.

Dany Page

Wednesday, February 10, 2010

(start again with a

smaller time step dt)

l

NSCool: User’s Guide

®00 | NSCool.f

C e 2k 2 e e e e e e e e e o o ok ok ke e e e e e e e e e e ok ke ok ke ok ke e e e e e e o ok ok ok ok ke ok e e e e e o o o ok ok ok ok ok ok e e o o ok ok ok ok ok

C THIS IS THE MAIN TIME LOOP:
do 9999 istep=1,istepmax

C e 3k o e e e e e e e o o o ok ok ok ok e e e e e e e o o e ok ok ok ke ok e e ke e e e o o ok ke ok ok ok ke e e e e o o o o ok ok ok ok ok ke e e e o o ok ok ok ok

debug=0.
1f (istep.ge.istep_debug) debug=debug_keep
1 (debug.ge.l.) print *, Going: istep=',istep

C 3 2k 2k e e o o o o o o o o o ok ok ok ke e o o o o o e ke ke ok ok ok ok ok ok o ok ok e ke ke ok ok ok ok ok ok ok ok ok o o ke ok ok ok ok ok ok ok ok ok ok ok ok ok

2345 1itrial=0 ! Branch back here in case:
! - Too many iteration in Newton-Raphson
! - Envelope boundary condition cannot be s
! - Temp has changed too much
4 e e o o e e e ok o e e ok o e e o o o e e ok o e e ok ok o e ok ok o e e ok ok o e ke ok o e ke ok o e e ok ok o e ke ok o e e ok ok o e ok ok o o ke ok ok ok ok
:** NSCool.f 31% (397,0) (Fortran)
e e e o o e e o o e e e ok e e e ol e o e e o e e e ok e e e e ke o e e ok o e e ke o o e e ok ok e e ok ke e e ke ok o e e ke o e e ke ok o ok ok ok ok ok ok
e o b ok e e o o o b ok ke e o o o ok ok ke e o o o ok ok ok e o o ok ok ok ok ke ok ok ok ok ke e ok ok ok ok ok e ok ok ok ok ok ol e ok ok ok ok ok ok o ok ok ok ok ok ok
o o ok ok Branch here if new trial 4 e e o o e e e o o e e o o e e ok ok o e e ok o e e ok ok o e ok ok o o ke ok ok ok ok
3 e e o o e e e o e e e ok e e e ok e o e e o e e e ol o e e e ok o e e ok o e e ke e e e e ok o e e ol o o e e ok e e e ol ok e e ok ok o e ke ok ok ok ok

nNNDoNonnl,,n—

3 2k 2 o o o o o o o o o ok o ok ok ok ok ok o o ok ok ok ok ok ke ke ok ok ok ok ok ok ok ok ok ke ke ke ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok

C e 2k 2 e e e o o o e o e o e ok ok ok e e e e o e o e e e ok e ok ok ok ok e ke e o o e ke ok ke ok ok ke ke ke ke e o o e ke ke ok ok ok ok ok ok o ok ok ok ok ok

2000 itrial=itrial+l I This is the Newton-Raphson 1oo
C o e ok o ok o ok
1f (itrial.eqg.itrial_max+1)then
tcut=dsgrt(dte)
1f (time.le.l.e5) tcut=dsgrt(dtl)
dtime=dtime/tcut
goto 2345
end if

-:** NSCool.f 39% (498,0) (Fortran)

C 3 2k 2 o e o o o o o ok o o o ok ok ok ok ok ok o ok ok ok ke ke ke ke ok ok ok ok ok ok ok ok ok ok ok ke ko ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok

C Decide if converged or not:
1f ((ratiot.lt.mratt).and.(ratiol.lt.mratl).and.(ratios.lt.mrats))
x then
continue ! Converged ! continue to next time step
else
goto 2000 ! Not converged ! Go back for another iteration
end if

e 2k e e e e e e e e e o o o e ke e e e e e e e e e o o ok ke ok ke ke ke e e e e e e e ok ok ok ok ok ok e e e e e o e o e ok ok ok ok ok e e o o ok ok ok ok ok

-:** NSCool.f 66% (855,0) (Fortran)

0

Code Structure

instituto de astronomia

unam

Flow diagram of NSCool (bigger)

Initialization

Initial guess of the new

T and L profile at new t

K - - . »‘
cSCape Route l

Get correction to T: 8T
Get correction to L: oL

AV curacy

|()Ug)

Accuracy:

NO are oT and oL small

-

Wednesday, February 10, 2010

T L
enough?

Print out results in
Teff_*.dat & Temp_*.dat

Calculate the

new time step

A

Firn2

1000

NO

Are we
finished?

END

21

instituto de astronomia

unam

Adjust density in outer

Prepare matrix [D®(X®)]

® OO0 NSCool.f (@)

part, if required.

— —

P—

Calculates physics
(Qv, Qn, Cy, and A) at Ti®

T is changed to (1-€)- Ti¥

to calculate the derivatives
Yy

—

Readjust density in outer
part, if required.

Recalculates physics
(Qv, Qh, Cv, and A)
at (1-€)- Ti®

Dany Page NSCool: User’s Guide

Wednesday, February 10, 2010

end do ‘
A
do i=imax-1,ienv+l,-2 v
-:** NSCool.f 46% (590,0) (Fortran)
C e o o o e e o o o e o o ok ok e ke ok ok ok o ok ok ok ok e ok ok ok ok e ok ok ok ok e ok ok ok ok ke ko ok ke ke ok ok ok ke ok ok ok ok e ok ok ok ok e ok ok ok ok e ok ok ok ok ok
| c ***** (Calculate the physical parameters at (1-tinc)*ntemp **¥***d***x*
C e 2 o o e e e o o e e o o o e e o o ke e e e o ok e e o o ke e e o ok e e e o ok ke e e o ok e e e o ok e e ok o ok e e e ok ke e e o ok ok e ok ok ok ok ok m

C e e e e e o ok o o e e e o o o e e e e ok o o e e e ok ok ok o e e e ol ok e o e e e ol ok ok o e e e ol ok ok o e e ke ok ok ok o e e e ke ok ok o ok ok ok ok ok

***** (Calculate the new density in inner envelope at ntemp *¥¥¥***¥xx m
e 2 o o e e o o o e e o ok ok e ke ok ok ok e ok ok ok ok e ke o ok ok e ke ok ok ke e ok o ok ke ke ke o ok e e ok o ok e ke ok ok ok e ok ok ok ok e ok o ok ok e ok ok ok ok ok

Nalls!

1f (debug.ge.1.) print *,
do i=imax-1,ienv+l,-2 v
-:** NSCool.f 41% (518,0) (Fortran)

C e o o o ok ok o o ok ok ok ok ok o ke ok

c ***** (Calculate the physical parameters at ntemp *¥¥¥¥¥IddkrrIddrrr**
k e o o o e e o o ok e ke ok ok ok o ke ok ok ok o ok ok ok ok ke ok ok ok ok ke ok ok ok ok ke ok ok ok ok ke ke ok ok ke ke ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok

1f (debug.ge.l.) print *, @
do i=1,1imax,2

t=ntemp(i)/ephi(i)

d=rrho(i)

a=a_cell(i)

al=a_ion(i)

z=z_ion(1i)

call neutrino(i,t,d,a,z,gnu(i), v

-:** NSCool.f 43% (544,0) (Fortran)

€ FAAAA A A A A A R R o R R o oo K R R o o oo R o o oo ok o o o o o

***** Calculate the new density at (1-tinc)*ntemp **¥¥¥¥EIddkrEIAA*¥*
e o o o e e o o o e e ok ok ok e ok ok ok ok e ke ok o ok e ke ok ok ok ke ok ok ok ok e ke ok ok ke ke ke o ok ke e ok ok ok e ke ok ok ok ke ok ok ok ok e ok ok ok ok ke ok ok ok ok ok

™ N

1f (debug.ge.l.) print *, @
tinc=nox(1l.d-12,ratiot/1.dl)

do i=1,1imax,2

ntempl(i)=ntemp(i)*(1.d@-tinc)

1f (debug.ge.l1l.) print *,

do i=1,1imax,2

t=ntempl(i)/ephi(i)

d=rrhol(i) v
-:** NSCool.f 48% (623,0) (Fortran)

Code Structure

22

instituto de astronomia

i Calculate [D®(X™®)], invert it and get X(k+1

unam

Calculate the do;
matrix elements dX; r

P—

Calculate the ®;(X®) .

-

Calculate [D®(X®)] .

Calculate the new Xik+1) l

XD = X6 _ DXL p(XK) r

Dany Page NSCool: User’s Guide
Wednesday, February 10, 2010

® 00 NSCool.f =

| *((rrhol(1i))- (orrho(1i)))/dtime*contraction
end do

C R KRR KRR KRR KRR KRR KRR KRR KRR R KRR KR KRR KR KRR KKK KK KK

c ***** Calculate the derivatives of fp,fq & fr *FHrFdrErEirirrrrrtoes m
€ HRRR R A R R R R R R R RO RO R R R RO R R R R R R R R R R RO R R R R R R R R R R R R R R ok ok ok

1f (debug.ge.l.) print *,

do i=1,imax,2 A

t =ntemp(1) v
-:** NSCool.f 51% (691,1) (Fortran)

end do

C A e e e e e e e e e e e o e e e e e e e e e b e e e e e e e o e e e o e o e o e b e o e e e e e ol o e o e e o ok ok o ok o ok ok ok ok ok ok ok ok ok
C Rk kk Calculate ff kb ko k ok

C Rk ko ko ko ko ko m

1f (debug.ge.l.) print *,

ff(0)=0.d0

do i=2,imax-1,2|)
fECL)=nlum(1)+.5d@*(fp(i-1)+fp(i+1))*aZephin(i)*dtemp(i) A
ff(l-L=fr(i-L+fq(i-*dlum(i-1)+(ntemp(i-1)-temp(i-1))/dtime v

-:** NSCool.f 52%(713,21) (Fortran)

C o o o o o o o o o ok ok R ok R R R ok ok ok ok ok ok ok ok
C LR L L Ne.'\.ton_Raphson .nethod LR R E R E LR LR R L e e

€ FRAAAAA AR KRR KRR KRR KRR KRR KRR KRR KRR KRR KRR KRR KR KK KK K K

1f (debug.ge.l.) print *,
do 1=2,1imax-1,2
| fa(i)=.5d@*dfp(i+1)*aZephin(i)*dtemp(i)+

Sde*(Fp(i+1)+fp(i-1))*a2ephin(i)/(debar(i)+debar(i+1)) A
fb(1)=.5d@*dfp(i-1)*aZephin(i)*dtemp(i)- v
-:** NSCool.f 53% (729,0) (Fortran)

end 1f

C A e b b b b b e e e b e e e e e e e e e e e ot e b o b e e e e e e o o ol o ok ok ok ok ok ok ok ok ok ok ok ok
k kR kkk Get nte.np & nlu.n hkkbkkkkkk bk kk

C A e e e e e e e o e e e e e o o b e e b b e e e b e e e b e e e o b b e ol e ol e b e o e o ol b o e e ol e ol ok ol ok o o ok ok ok ok ok ok ok ok ok ok ok

1f (debug.ge.l.) print *,

delt(imax)=ntp-ntemp(imax)

do i=imax-2,1,-2)

dell(i+1)=Ffk(i+1)-fj(i+1)*delt(1+2) 4

dell(i+l)= Crin2.d3*ab=(nlum(i+l)),0b=(dell(i+1))), v
-:** NSCool.f 58% (792,0) (Fortran)

Code Structure 23

D The outer boundary condition

instituto de astronomia

unam

This solves the condition:
L(ry) = 4mR?0sp[Te(Th)]*

using Newton’s method.

with Tb = T(I’b)

The function fteff(...) is Te(Th).

Escape Route:

Second Exit

Newton fails to find
the solution
(start again with a
smaller time step dft)

Dany Page NSCool: User’s Guide

Wednesday, February 10, 2010

®00 [| NSCool.f

C 34 2 e e e e o e e e e ke e e e e ke ok e e e ke ke ok e o ke ok ke e e e ok ok e e e ke ok o e o ke ok ke e o ke ok ok e e ke ke ok e o ok ok ok ke o o ok ok ok ok ok ok

C e 2 o e o e o o o o o ok ok ok ok ok ok Boundary condition e 2 e o e e e e o o o e e o e o o e ke e o o ke ok ok o ok ok ok ok ok ok
C 34 2k o e e e o e o e e e e e o e ok o o e e ke e o e e ke e e e e e ke ke e e e ke ok e o e ke ok e e e ke ok ok e e ok ok ok e o ke ok ok o o o ok ok ok ok ok ok

if (debug.ge.l.) print *,'Boundary Condition’
if (ifteff.ne.15) then
epsilon=1.d-8
precision=1.d-12
coeff=4.d0*pi*radius**2*5.67d-5*e2phi(imax)/1sol
lhs=nlum(imax-1)+fk(imax-1)+fj(imax-1)*ntemp(imax)
ntp=ntemp(imax)
tp@_keep=ntp
7654 tp@=ntp
teffO=Fteff(tp@/ephi(imax),ifteff,eta,bf_r(imax),istep,
1 time,tsl,ts2,z_ion(imax),a_ion(imax),rrho(imax),
2 debug)
if(debug.eq.-50.) print *,'Tbh0, Ted =',tpd,teffO
tpl=C1.d@+epsilon)*tpd
teffl=Ffteff(tpl/ephi(imax),ifteff,eta,bf_r(imax),istep,
1 time,tsl,ts2,z_ion(imax),a_ion(imax),rrho(imax),
2 debug)
if(debug.eq.-50.) print *,'Tbl, Tel =',tpl,teffl
derivative=coeff*(teffl**4-teff@**4)/(epsilon*tpd)
derivative=-fj(imax-1)-derivative
1f(debug.eq.-50.) print *, Derivative =',derivative
function=lhs-fj(imax-1)*tp@-coeff*teffo**4
i1f(debug.eq.-50.) print *,'Function =",function
ntp=tp@-function/derivative
1f(debug.eq.-50.) print *, ' Del(Tp)/Tp =" ,abs(tp@-ntp)/tpd
i1f(debug.eq.-50.) print *, ' ------ > New Tb =",ntp
if ((ntp.le.0.).or.(ntp.gt.1.e12)) then ! In case the method diverges
I restart iterations with shorter time step
tcut=dsort(scale_dt®)
1f (time.le.1l.e5) tcut=dsgrt(scale_dtl)
dtime=dtime/tcut
goto 2345
end if
1fCabs(tp@-ntp)/tp0@.gt.precision)goto 7654
else
ntp=tb_acc® ! Fixed T_b for accretion
end if

C 3 2 o o o e ok o o o e ok o o o e ke ok o o e ok ok ok ok e ok ok ok e ke ke ok ok ok e ok ok ok o e ok ok ok ok e ke ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

-:-- NSCool.f 55% (712,0) (Fortran)

Code Structure

instituto de astronomia

unam

Calculate the:

Maxi=135.... '
,77(k)
Jog -
Ma = '
X 2,4.0,... [:gk) —

to check accuracy
and convergence

As seen previously, next comes
the end of the iteration loop:

* Converged: l
go to next time step.

* Not converged:
go to next iteration.

Dany Page NSCool: User’s Guide

Wednesday, February 10, 2010

Check accuracy

®00 NSCool.f =

C 2 e o e o e o o e ok e ok ke ok ke ok ke ok o ok ok ke ok ke ok ke ok e ok ok ok ok ke ok ok ok ok ok ke ok ok ke ok ke ok ke ok ok ok o ok ok ke ok ke ok ke ok ok ok ok ok ok ok ok ok ok ok ok

C ***xx Analyze the results to see if it has converged ****¥¥¥rirrrrrrx
C 2 2 e e o e e e o e e e o e e e o o e e o o e e o e e e o ke e e o e e e ok ke e e o ke e e o ke e e ok e e e ok e e e o e e e ok e e ok ok ok ok ok ok

1f (debug.ge.l.) print *,
ratiot=0.do
ratiol=0.de
do i=1,imax-2,2
ratl=0bs(dell(i+1))/(
1f(ratl.gt.ratiol)then
ratiol=ratl
iratl=i+1 m
end 1f
ratt=0bs(delt(i)/(ntemp(i)+1.d-30))
1f (ratt.gt.ratiot)then
ratiot=ratt
iratt=1i
end if ;
end do &

(nlum(i+1))+1.d-12)

-:** NSCool.f 63% (822,0) (Fortran)

C 2 e o e o o ok o e ok ke ok ke ok ke ok ke ok ok ok ok ke ok ke ok ok ok ok ok ok ok ok ke ok ok ok ok ok ke ok ok ok ok ke ok ok ok ke ok

C Decide if converged or not:
1f ((ratiot.lt.mratt).and.(ratiol.lt.mratl).and.(ratios.lt.mrats))
then
continue ! Converged ! continue to next time step m
else
goto 2000 I Not converged ! Go back for another iteration
end if }
C 3 e o e o e e o e o e o e o e o e e e e ok e o e ok e ok e ke o e ok e ok e ok e ol e e e e ok e ok e ok e ke e e o e ok e ok e ok e ke o e o ke ok ok ok ok ok A
v

-:** NSCool.f 66% (856,0) (Fortran)

Note: “ratios” was the same thing for
the magnetic field Stoke'’s function:
not here anymore (ratios is set to zero)

Code Structure

25

Getting the new dt

instituto de astronomia

unam
® 00 NSCool.f =)
NOW that Iteratlons have Converged, C 3 e e o e e o e e o e e o e o o e o e e o e e o e ke ok e e o e e e e o ol e o e e ok e ke ok e e o e e e e o ok e o ol e o e e ok e ok ok ke ok ok ok ok
NSCool analyzes the process e T e v
and prepareS fOF the neXt tlme Step E This is a delicate part, based on experience and many trials and errors.
¢ It works pretty well, so avoid changing it !
NSCOO-I_ trleS tO Increase E PHILOSOPHY OF TIME STEP CONTROL:
. E (Time of step just finished is "time+dtime", not just time !)
the time step dt c The new "dtime" will be "scale_dt*dtime" with "scale_dt" calculated below. 0
c Allows for 2 different "scale_dt": at earl ime, while relaxing from initial
(:dtime Varlable) aS C conditions, agcu"acy Jics not i'npzﬂtant and gn‘ec can allow for la"ge" ti’nesth:
- C "scale_dt®" and "scale_dtl" are read from the file
dt'ime — Sca']-e_dt*dtime E :gg—zé?}:ﬁ:aZaiq'n:iczﬁc—rzggl);éqgﬁcve increase in "dtime"
. -:** NSCool.f 67% (872,0) (Fortran)
Factors controlling scale_dt: °
1) If T; differs too much from 7T;°, scale_dt is shortened. This uses
_ |77 . Told|
max_dtemp = Max;—1 35 _ < Toldl
/
2) If the resulting scale_dt is too small, i.e., n e Rout
: : scCape noute.
7; differs way too much from 7;°4, the time ' 3rd &pLast Exit
step is recalculated with a shorted dtime.
3) If finding the solutions required more than the desired number of iterations,
scale_dt Is also reduced.
Dany Page NSCool: User’s Guide Code Structure

Wednesday, February 10, 2010

instituto de astronomia

unam

Flow diagram of NSCool (bigger)

Initialization

Initial guess of the new

T and L profile at new t

K - - . »‘
cSCape Route l

Get correction to T: 8T
Get correction to L: oL

AV curacy

|()Ug)

Accuracy:

NO are oT and oL small

-

Wednesday, February 10, 2010

T L
enough?

Print out results in
Teff_*.dat & Temp_*.dat

Calculate the

new time step

A

Firn2

1000

NO

Are we
finished?

END

27

Up-date 7 & L

unam

Iterations have converged: ntemp(i) and
nlum(i) are the solution 77 and Li. They are
copied to temp(i) and lum(i) so that they
become the T;°d and L9 at next time step.

[The variables “osomething” are so defined
that, at next time step ,they will refer to two time
steps back: they will be used to guess the initial

profiles 77 <=0 and L0 by extrapolating.]

The following sections
calculate a bunch of things
for information purpose.

Dany Page NSCool: User’s Guide
Wednesday, February 10, 2010

® 00

NSCool.f

C e o e o e o ok ok ok ok ok ok

e 2 e o e o o e o e o ok ok ok ke o ke e ok ke ok ke o ke e ok ke ok ke o ke ok ok ke ok ke e ok ke ok ke o ke o ok ok ok ke o ke ok ok ok ok ok ok ok

C ***** End of iterations

C FEEEEERKKKKK

e e e 2 e e o o o e ok e e o ok e e ok ok e e ok e e o ok o ke ok ok e ke ok o ke ok ok o e ok ok e ok ok ok e ok ok ok ok ok ok ok ok ok ok ok

do i=1,imax,?2
otemp(i)=temp(i)
temp(i)=ntemp(i)
orrho(i)=rrho(i)
orad(i)=rad(i)
obar(i)=bar(i)
continue

do 172 i=2,imax-1,2
olum(i)=lum(i)
Tum{i)=nlum(i)
orrho(i)=rrho(i)
orad(i)=rad(i)
obar(i)=bar(i)
continue

-:** NSCool.f 74% (963,0) (Fortran)

® 00 NSCool.f

0

C ++++++++H
C +++++++++++HH
C

¢ Stuff below, till the next +++++ line is only informative and not

c used in the calculations.

-:** NSCool.f 77% (996,0) (Fortran)

(=)

e 2k o o o o ok e e o o e ok o o o e ok ok o o o ok ok ok o ke ok ok ok ok e e ok ok ok ok o ok ok ok ok ok ok ok o ok e ok

Cc ***** (Calculate the neutrino luminosity and heating: **¥¥*¥¥xi*xxdxxx
C e e e o o o e e e ok ok o e e e ok ok o o e e ok ok o o e e ok ok ok o e e ke ok ok o e e ke ok ok ok o e e ok ok o o e e ok ok ok o e e ok ok ok o ok ke ok ok ok ok ok

-:** NSCool.f 79% (1038,0) (Fortran)

k ***** CALCULATE THE INTEGRATED NEUTRINO LUMINOSITIES: **¥¥¥dkkiikkik*
C Note: lnu_tot, calculated from gnu(i), is the garanteed total

C neutrino luminosity. The other ones are only informative.

-:** NSCool.f 81% (1057,0) (Fortran)

k ***** CALCULATE THE INTEGRATED SPECIFIC HEATS: *¥¥¥dkikkikikkikikrtrs
C cv_tot_all, calculated from cv(i), is the garanteed total

C specific heat. The other ones are only informative.

-:** NSCool.f 82% (1078,0) (Fortran)

I e B B B A o L e o2 o
k I I o 2 o S
I A B B B o o o
-:** NSCool.f 85% (1117,0) (Fortran)

«» «» «»S

«» &

Code Structure

28

instituto de astronomia

unam

Print out results in the files
“Teff_*.dat” and “Temp_*.dat”
[all done in file NSCool_PRINT.1inc. f]

Update the time variable

That o all Follos !

® OO0 NSCool.f ()

ke ok ke o ok 3 ok 3 ok ok ok ok ok ok 3 ok o ok ok ok ok 3k ok ok ok o ok ok ok ok ok ok o ok ok ok ok ok ok 3k ok o ok ke ok ok 3k ok o ok ok ok ok ok ok ok ok o ok ok ok ok ok ok o ok ok ok ok

e e e o e o o e o e o e o ok o o ok ok ok ok pwlnt Out wesults e e e o e o e e o e o o e o e e e e ok e o ke o ok e ok ok ok ok ok

NN

e 2 e o e e o e o e o ok e ok e o ok ke o e o ok ke ok e o ok ke ok e o ok e ok ke o ke ke ok ke o ke ke ok ke o ke ok ke o ok ke ok e o ke ok e o ok ok ok ok ok ok ok ok m

INCLUDE -
v

-:** NSCool.f 86% (1121,0) (Fortran)

e o e o e e o e o e o ok ke o e o ok ke o e o ok ke ok ke ok ok ke ok e o ok e ok ke ok ok ke ok ke ok ok ke ok ke o ke ke ok e o ok ok e ok ok ke ok ke o ok ok ok ok ok ok ok ok

3 2k 2k ok ok ok ok ok ok ok ok ok ok ok ok ok CALCULATE THE NEW TIME STEP 2 2k 2 2k ok o o o o e o o ok ok ok ok ok ok ok ok ok ok

e 2 e o e o e e o e o e e o e o e e o e e e e o e o ke e o e o e e o e o e e o e o e e o e o e e ok e o ke e ok e ok e e ok e ok e o ok ok ok ok ok ok

NTT N

time=time+dtime @

odtime=dtime

dtime=nin(scale_dt*dtime,dtlimit) A
v

-:** NSCool.f 91% (1197,0) (Fortran)

Follow two sections to control dtime in case of accretion: more on this later !

Dany Page NSCool: User’s Guide

Wednesday, February 10, 2010

00 [| NSCool.f)

C 3 2 e o e o e o e e ok e ok e ke o ke ok ke ke e e ok ke ok e ke ok ke ok ke ke o ke ok ke ok o ke ok ke ok e ke ok e ok o ke ok ke ok e ke ok ke ok ke ke o ke ok ok ok ok ok ok ok ok

1f (time/year.ge.timemax) goto
1f ((sign_l*teffective).lt.tempmin) goto

2 o e o o e o ok ok ok ok ok ke ok ok ke ok ok ke ok ok ok ok ok ok ke ok ok ke ok ok ok ok ok ok ke ok ok ke ok ok ok ke ok

continue ! This is the "end do' for the main time integration
3 e e 2 e e e o e e o e e o e e e o e e ok e e o ke e e ok e e o e e ok e e o ok e e ok e e ok ke e o ke e o ok e e ok e e ok ke e o ok e o ok ke ok ok ok ok

c
C 3 e o o e o e o o ok ok ke ok e ok ok ke ok ke ok o ke ok ke ok e ke ok ke ok ok ok ok ke ok ke ok ok ke ok ke ok ok ke ok ke ok ke ok ok ke ok ke ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok O
po98 continue ! Jump here if time > timemax

C 3 o e o o e o ok e ke ok ok ke o ok ke ok ok ke ke ok ke ke o ok ke ok ok ke ok ok ke ke ok ok ke ok ok ke ok ok ke ok ok ok ke ok ok ok ok ok ke ok ok ke ok ok ok ok ok ok ke ok ok ok ok ok ok ok v

-:-- NSCool.f 97% (1286,0) (Fortran)

T —
Code Structure

29

Wednesday, February 10, 2010

