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Neutron star cooling on a napkin

Assume the star’s interior is isothermal and neglect GR effects.

Thermal Energy, Ew ,balance:

dE;h dl
—Cy— =—Ly—L,+H
dt dt 7 *

= 3 essential ingredients are needed:

e C, = total stellar specific heat
e [, = total surface photon luminosity
e [, = total stellar neutrino luminosity

H = “heating”, from B field decay, friction, etc ...
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Specific heat on a napkin
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2 *
Sum over all degenerate fermions: ¢, = E Cvi Gi= N(O)%kéT with N(0) = :;’,;F

(lowest value corresponds to the case

CV — /// Cy dV/ ~ 1038 — ]_039 X T9 erg K—l — C9T9 where extensive pairing of baryons in

the core suppresses their ¢, and only
the leptons, e & p, contribute)
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The direct Urca process

Basic mechanism: 3 and inverse 3 decays:

n—p+e +v. and p+e — n+ v,

“Direct URCA process in neutron stars”, JM Lattimer, CJ Pethick, M Prakash & P Haensel, 1991 PhRvL 66, 2701
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Momentum conservation:

“Triangle rule™: prn < Prp + Pre

3 .
N = KE | N n1/3 1/3 1 n1/3 _ 2n1/3
372
n 1
Np+n, — 9

“Direct URCA process in neutron stars”, JM Lattimer, CJ Pethick, M Prakash & P Haensel, 1991 PhRvL 66, 2701
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The modified URCA process

(

n — P+ € + Ve

pTre — N+ Ve )

If the direct Urca process: <

Is forbidden because of momentum conservation, add a spectator neutron:

n—+n — p+n+e +Ue
p+n+e- — n+n+ve

Modified Urca process: {

Momentum conservation is automatic, but the price to pay is:

3 vs 5 fermions <k5T>2 ( 0.1 MeV - Ty

2
. = ~107°. T2
phase space: Er 100 MeV - EF100> 0 9

“Direct URCA process in neutron stars”, JM Lattimer, CJ Pethick, M Prakash & P Haensel, 1991 PhRvL 66, 2701
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Neutrino emission on a napkin (1)

The Murca-Bremsstrahlung family and Durca

Name

Process

Emissivity
(erg cm™3 s71)

Modified Urca cycle
(neutron branch)

Modified Urca cycle
(proton branch)

Bremsstrahlung

Direct Urca cycle

n+n—n+p-+e —+ U
n+p+€& —N-+n-+ e
p+n—p+p+e + e
pr-pr+e —p+nNTle
n+n—n+n-+v-—+v
n+p—n+p+v-+v
p+p—=pt+tp+v+v
n—p+e + e
p+e — N+ Ve

~2x10°1 R T8

~10*' RT§
~ 101 RT§

~ 107 RTS

Slow

Slow

Slow

Fast
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Hyperons in neutron stars (l)

Hyperons, as A and 2~ can be produced through reactions as, e.g.

(

p+e- —
\A —
n+e —
> —

\

N+ Ve
p+ e + Ve
> + v,
n—+ e -+ Ve

Energy conservation requires:  up = W, and lUs- = Uy + Ue

Momentum conservation: very easily satisfied for A
and not very difficult to satisfy for 2~

Hyperons will result in DUrca processes if they can be presentJ
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stronomia

Charged mesons (11" & K°) in neutron stars

Hyperons, as M~ and K™ can be produced through reactions as, e.g.
n+e¢e — n+m 4 Ve
n+m — n+e —+ Ve

n+e  — n+ K + g
n+K- — n+4+e +UVa

Energy conservation requires:  m; = [le OF M = e

Momentum conservation: trivially satisfied because mesons condense
(they are bosons) and the condensate can
absorb any extra needed momentum

Charged mesons will result in DUrca processes if they can be presentJ

| 4
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Neutrino emission on a napkin (lll)

Name

Process

Emissivity
(erg cm™3 s71)

Modified Urca cycle
(neutron branch)

Modified Urca cycle
(proton branch)

Bremsstrahlung

Cooper pair
formations
Direct Urca cycle

(nucleons)
Direct Urca cycle
(A hyperons)
Direct Urca cycle
(X~ hyperons)
7~ condensate
K~ condensate

n+n—n+p+e + Ve
n+p+e —n+n-+ e
p+n—p+p+e +le
p+p+e —p+n+ e
n+n—-n+n+v-+v
n+p—n+p+v+v
p+p—>p+p+v+v
n+n—[nnl+v+o
p+p—|pp|l+v+u
n—p+e + Ve
p-+€& — N+ Ve
N—p+e + U

p+e >N+ v,

> > n+e + U
n+e — 22X + e
n+<m >=n+e + Ua
n+< K- >>n+e + e

~2x10%1 R TS

~ 102 RTE

~ 1019 R TS

~ 5x1021 R T{
~ 5x101° R T{

~10°" RT§
~ 10%" R T

~10°" RT®

~10° RT§
~ 10 RT®

Slow

Slow

Slow

Medium

Fast

Fast

Fast

Fast
Fast
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Neutrino emission on a napkin (lll)

Name
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Emissivity
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n+<m- >—>n+e + 0 ~10° RT§ Fast
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Plasmon decay process

[ — Vv +V

Bremsstrahlung processes:

e+ s e +AZ v+ T

n+n—mn+n+v-+v

Pair annihilation process:
Y+y e  +et —v+T

Photo-neutrino process:

Y+e —e +V+V

Wednesday, July 7, 2010
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Log T [K]

Log (o) [g/cm’]

Regions where the indicated neutrino emission process contributes more than
90% of the total.

=1 Dominant neutrino processes in the crust

|6



Simple
Analytical Solutions



Analytical Solution
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dFE,, dT ' |
=Cy— =—L,— L :
dt O dt T :
T :
C,=CT L,=NT® L, = ST2+4O‘J ] .;
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1 -
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Analytical Solution

dFEy, dT ' 36 ———
- Cy— =—L,— L, - :
dt ¢ dt K ; :
35 F .
C,=CT L,=NT® L, = ST2+4O‘J S -f
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32 -
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dE,;, dT
-C,— =—-L,—L,
dt dt K

C,=CT L,=NT® L. = ST2+4O‘J

L, = 47R*cT. using T, o< T*°** with a < 1

@ Neutrino Cooling Era: Ly >> L,

T6 T8

O Ty =A
dt ct 0

|

{To<t_1/6 and Teoct_l/12 |

¢ Photon Cooling Era: Ly>> Ly

dT N 1 1
=T st g = A —
dt S ’ [ ]

Te  To

{Toct_l/o‘ and T, oc t—1/2¢

Dany Page Cooling of Neutron Stars
Wednesday, July 7, 2010
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MUrca vs DUrca




Models based on the PAL EOS:

adjusted (by hand) so that
DURCA becomes allowed
(triangle rule !) at M > 1.35 Msun.

5.4
5.2 |
| FAST
5 A e W T N :
0 1 2 S 4 S 6 7

Log t (years)

“The Cooling of Neutron Stars by the Direct Urca Process”, Page & Applegate, ApJ 394, L17 (1992)
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Models based on the PAL EOS:

adjusted (by hand) so that
DURCA becomes allowed
(triangle rule !) at M > 1.35 Msun.

This value is arbitrary:
we DO NOT know the value of

5.4
! this critical mass, and hopefully
5.2 - observations will, some day, tell
: FAST us what it is !
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Standard cooling of a 1.3 Mo neutron star
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Standard cooling of a 1.3 Mo neutron star
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Standard cooling of a 1.3 Mo neutron star

Atmosphere
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Standard cooling of a 1.3 Mo neutron star
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Standard cooling of a 1.3 Mo neutron star
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Standard cooling of a 1.3 Mo neutron star [Animation file: 1.3_N.mov]
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Models based on the PAL EOS:

adjusted (by hand) so that
DURCA becomes allowed
(triangle rule !) at M > 1.35 Msun.

This value is arbitrary:
we DO NOT know the value of

5.4
! this critical mass, and hopefully
5.2 - observations will, some day, tell
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Enhanced cooling of a 1.5 Mo neutron star
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Enhanced cooling of a 1.5 Mo neutron star
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Enhanced cooling of a 1.5 Me neutron star [Animation file: 1.5 _N.mov]
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Pairing in nuclel

FiG. 1. Energies of first excited
intrinsic states in deformed nuclei,
as a function of the mass number,
The experimental data may be
found in Nuclear Data Cards [ Na-
tional Research Council, Washing-
ton, D. C.] and detailed references
will be contained in reference 1
above. The solid line gives the
energy 8/2 given by Eq. (1), and
represents the average distance
between intrinsic levels in the odd-
A nuclei (see reference 1),

The figure contains all the
available data for nuclei with
150 <A <190 and 228 < A. In these
regions the nuclei are known to
possess nonspherical equilibrium
shapes, as evidenced especially by
the occurrence of rotational
spectra (see, e.g., reference 2).

ne other such region has also been
identified around A4 =25; in this
latter region the available data on
odd-A nuclei is still represented by
Eq. (1), while the intrinsic excita-
tions in the even-even nuclei in
this region do not occur below 4
Mev.

We have not included in the
figure the low lying K=0 states
found in even-even nuclei around
Ra and Th. These states appear to
represent a collective odd-parity
oscillation.

EXCITATION SPECTRA OF NUCLEI 037
E
(Mev
00 o even-even nuclei
o x odd-A nuclei
o %o
10 o0 o o o
° o o
o
o o o
o
QS »
x X x x %
x
N X x x x Xx;
%X
01 x x X x XX x 4
> L Xy 1 L L —
150 170 190 210 230 250 A

Dany Page

Possible Analogy between the Excitation Spectra of Nuclei and Those of the Superconducting Metallic State

Bohr, A.; Mottelson, B. R.; Pines, D. (1958), Phys. Rev. 110, p.936
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possess nonspherical equilibrium
shapes, as evidenced esgpecially by
the occurrence of rotational
spectra (see, e.g., reference 2).

ne other such region has also been
identified around A =25; in this
latter region the available data on
odd-A nuclei is still represented by
Eq ( 1) while the intrinsic excita-
tions in the even-even nuclei in
this region do not occur below 4
Mev.

We have not mcluded in the

EXCITATION SPECTRA OF NUCLEI

E
Mev

00
(o} x odd-A nuclei

10 o0
(6]

o

o

o even-even nuclel

037

x XXy

0.1

Possible Analogy between the Excitation Spectra of Nuclei and Those of the Superconducting Metallic State
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Bohr, A.; Mottelson, B. R.; Pines, D. (1958), Phys. Rev. 110, p.936
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Pairing of nucleons ?

unam

Cooper theorem: the Fermi surface is unstable
(at low enough temperature) to the formation
of Cooper pairs 1f there 1s any attractive
interaction in some channel.

Question 1: which attractive interaction and
which channel ?
Question 2: at which temperature ?
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Pairing of nucleons ?

unam

Cooper theorem: the Fermi surface is unstable
(at low enough temperature) to the formation
of Cooper pairs 1f there 1s any attractive
interaction in some channel.

Question 1: which attractive interaction and
which channel ?
Question 2: at which temperature ?

“Answer” 1: look at phase shifts for in-vacuum
nucleon-nucleon interactions (positive phase-shift
means attraction):

e at low energy the 'Sy channel is attractive
e at higher energies the P, channel is attractive

Other attractive channels exist but lead to very
small gaps: apparently the *P> gap dominates.

Wednesday, July 7, 2010
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¥ KAZARINOV etal,

P (10%cem®)

Fig. 1. Nucleon-nucleon scattering phase shifts versus
Ey_y1aB® =4FE, Solid (dotted) lines represent the
phase shifts calculated from the OPEG potential with
2GeV soft core (the OPEH potential with the hard
core radius=0.42fm).” For the 3P; phase shifts,
solutions of the phase shift analysis are shown.!®

Superfluid State in Neutron Star Matter. | Generalized Bogoliubov
Transformation and Existence of 3P2> Gap at High Density
Tamagaki, R., 1970PThPh..44..905T
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AWPIL

AWPIII

[}

é Crust-core transition

ke(n) [fm™']

1

Cooling of Neutron Stars

1.5 2

Prediction for the neutron 'Sg Te

WAP: Wambach,
Ainsworth & Pines, Nulc.
Phys. A555 (1993), 128

CCDK: Chen, Clark, Davé
& Khodel, Nucl. Phys.
A555(1993), 59

SCLBL: Schulze, Cugnon,
Lejeune, Baldo &
Lombardo, Phys. Lett.
B375 (1996), 1

SFB: Schwenk, Friman &
Brown, Nucl. Phys. A717
(2003), 191
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Prediction for the neutron 'Sg Te

1 I 1 1 1 ls
é Crust-core transition

" SCLBL |

AWPIL

." AWPIIIL L
”
/

Important
feature:

Medium
polarization

effects reduce T,
by a factor three

33



instituto de astronomia

unam

0.8

Dany Page
Wednesday, July 7, 2010

Prediction for the proton 'So T¢

CCDK

CCY_ms-

CCY ps_

.l\ .' _
. <—EEHO
*— BCLL-
1.5

Cooling of Neutron Stars

T: Takatsuka, Prog.
Thero. Phys. 50 (1970),
905

CCY: Chao, Clark &
Yang, Nucl. Phys. A179
(1972), 320

AQO: Amundsen &
Osgaard, Nucl. Phys.
A437 (1985), 487

BCLL: Baldo, Cugnon,
Lejeune & Lombardo,
Nucl. Phys. A536 (1992),
349

CCDK: Chen, Clark,
Davé & Khodel, Nucl.
Phys. A555 (1993), 59

EEHO: Elgaroy, Engvik,
Horth-Jensen & Osnes,
Nucl. Phys. A604 (1996),
466
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Prediction for the proton 'So Te

Important features:

All vanish at
pPr >1.3 fm™

and most at
pe > 1 fm™

Expected maximum T_
~1-2x10°K

Medium polarization
effects seem to reduce
T. by a factor three
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Prediction for the neutron P2 T.

0: Hoffberg, Glassgold,
Richardson & Ruderman,
Phys. Rev. Lett. 24
(1970), 775

1: Amundsen & Osgaard,
Nucl. Phys. A442 (1985),
4163

2: Takatsuka, Prog.
Theor. Phys. 48 (1972),
1517

a, b, c:

Baldo, Elgaroy, Engvik,
Horth-Jensen & Schulze,

Phys. Rev. C58 (1998),
1921

Cooling of Neutron Stars CompStar 2010 School, Caen
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T, [10"° K]
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ke(n) [fm~]

Important feature:

WE DO NOT REALLY
KNOW WHAT IT IS

Medium polarization
effects were expected to
increase the *P, gap
while they probably
strongly suppress it.
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Problem with the 3P2 phase-shift
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nucleon interaction Q
| 14 | N Y
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shift above 300 MeV. g 3 |
" a1 5 Arndt et al.
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previous slide reflect this ) 2 © Paris
. Na
uncertainty: 5 M P A I B P
any one of them is possible P T
y P E., [MeV]

FIG. 4. *P, phase-shift predictions of different potentials up
3P,-3F, pairing in neutron mater with modern nucleon-nucleon potentials to Ep=1.1 GeV, compared with the phase-shift analysis of
M. Baldo, @. Elgargy, L. Engvik, M. Hjorth-Jensen, and H.-J. Schulze Arndt ef al. (1997) (Color in online edition).

Phys. Rev. C 58, 1921-1928 (1998)
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The presence of a pairing gap
In the single particple
excitation spectrum results in
a Boltzmann-like

~exp(-A/ksT)

suppression of ¢y and é&y:

c, —> C\I/Dalred _ RCC\I/\Iorma|

€, —> €Ilialred _ Rueblormal
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Size and extent of pairing gaps is highly uncertain |
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Slow neutrino emission
(modified URCA process)

v

Fast neutrino emission
(almost anything else)

et ~ 10" TY ergem™> 57!

e ~10°t TS ergcm ™3 571

e n =24 - Kaon condensate
e n =25 - Pion condensate
e n =26 ~ Direct Urca

Wednesday, July 7, 2010

Log L, (erg/s)
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Slow vs fast cooling with pairing

= “Slow cooling”

"Fast  _
cooling”




Slow vs fast cooling with pairing

Slow neutrino emission
(modified URCA process)

slow 21 18 —3 —1
e, ~ 107" Tg ergcm ~s

Fast neutrino emission
(almost anything else)
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Standard cooling of a 1.3 Mo neutron star with pairing [Animation file: 1.3 _P.mov]
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Enhanced cooling of a 1.5 Me neutron star with
pairing

X
|

Inner
Core

Envelope

=~
I

5 v o e by by by e by by il 5 |||||| e | P P A A | Loy i aaaay Lo a1 Loy v aaaay
-8 -6 —4 -2 0 2 4 3] 12 10 8 o 4 2 O

Log age (years) Radius (km)
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Enhanced cooling of a 1.5 Moe neutron star moderated pairing [Animation file: 1.5 P.mov
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Envelopes:

Heavy vs light elements
Magnetic fields
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Neutron star cooling on a napkin

Assume the star’s interior is isothermal and neglect GR effects.

Thermal Energy, Ew ,balance:

dE;h dl
—Cy— =—Ly—L,+H
dt dt 7 *

= 3 essential ingredients are needed:

e C, = total stellar specific heat
e [, = total surface photon luminosity
e [, = total stellar neutrino luminosity

H = “heating”, from B field decay, friction, etc ...
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GUDMUNDSSON, PETHICK, AND EPSTEIN
d I 1 I 1 1 1 1 T i 1 T T T [
8 fn
X
- 7
o)
°
6
5 | | ] L I L I | 1 i 1 ] 1 1
-&4 -2 0 2 A 6 8 10
log p (g cm?)
F1G. 2.—Temperature profiles for three values of the surface temperature 7, and various values of the surface gravity g,
Neutron star envelopes Structure of neutron star envelopes
Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. |., 1982ApJ...259L..19G Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. |. 1983ApJ...272..286G
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The Eddington “Atmosphere”

Eddington approximation: Effective temperature:

e F 1s uniform ,
e Diffusion approximation: F=oT% = —achl — 74 _ 2T6l
e 2 e

c def _Ed(aT4)

F = — —
Irp dr 3 dr 1 3
dr = —kpd
( T Kp T) T4 — — T€4 1 —I— — T
*No incident radiation at t=0 2 )
Integrate to get aTl? = 3tF/c + Constant 2
and Constant = aT¢* (at © = 0). Photosphere at: - =
No 1ncident radiation at =0 gives: 3 y
1 1
F = §C€P = §OJCTSL kKpAz|p = K;E — 2 (g=surface gravity) gives:
2 :
37 1 3 9s Eddington
4 _ 4 4 _ g4 _
al” = gecto tale = alg <1 i 57) Pp 3K p condition
y

47
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Eddington approximation:

e F 1s uniform
e Diffusion approximation:

¢ de _Ed(aT4)
3kp dr 3 dr
(dT = —Rpdr)

F =

eNo incident radiation at t =0

Ir T stant
“ Self-inconsistent:
N  diffusion approximation
breaks down near the
photosphere because [,
becomes highly
anisotropic !
a’l __ __ wwar-pyy—a §7'
C 2 o U ) \ 2

Wednesday, July 7, 2010

)

The Eddington “Atmosphere”

Effective temperature:

1
F =0T = 5oLchl — T =21,

1 3
T = T 1+ =
5 te \ 1T o7

2
Photosphere at: T = §

Wy,

Pp 2

KpAz|p = HJ? — (g=surface gravity) gives:

PP _ 298 Eddington
SEP condition
4
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Atmosphere Temperature Profiles

unam

The simple results of the Eddington
approximation give a honest qualitative 7

| |
. . — ‘}A
description of the photosphere when - /-
compared with detailed models: 65 -
4 1 4 3 g l_ ]
T = ST (1+ 5 l: :
B~ _ |
> a0 5.0 — —
Q = |
T — — B ,/ ' ———— He ]
3 - oo == Fe
) 45— 10gT =47 —
Do o o b b a1
-8 —0 —4 —2 0
-2
293 Log v [g em™]
_P P — Fig. 2. Temperature profiles T'(y) of the models with different
SKP effective temperatures and chemical compositions. The filled
4 circles mark the points where T'(y) = Tes: the corresponding
1 = Yot can be considered as a characteristic depth of the
QM atmosphere.
1
GR effects: g5 = —; -
R \/1 T 2GM/C R Model neutron star atmospheres with low magnetic fields. |. Atmospheres in radiative equilibrium.
Zavlin, V. E.; Pavlov, G. G.; Shibanov, Yu. A. 1996A&A...315..141Z
Dany Page Cooling of Neutron Stars CompStar 2010 School, Caen 48
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Opacities

Free electron scattering (Thomson):

ST e? .
——— or = 3 ( 2) — 0.665 x 10724 cm?
T _ MeC
Kes = € =0.40f, cm? g~ ! 7
P ) Ne = fep/m, or fo= 7

Free-free absorption (inverse bremsstrahlung) and bound-free absorption (photoionization):

kv has an overall v frequency dependence and

this type of p T dependence

KR X pT_3'5 J is usually called a
Kramer opacity

For more details see: Shapiro & Teukolsky’s book, Appendix I

Wednesday, July 7, 2010
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A simple envelope model

In a thin envelope: m=M, r=R, and L (and F) are uniform:

dr 1 3kp L

dr A 4acT3 4nR? oT 3L K
dP GM = oP  16macGM T3
i N

Kramer opacity: k = kg p T° and ideal gas P = (R/u) pT = k =xp P T’ and thus:

) C=0 : “zero solution”
—  T°%° = B(P*+ () gives P=T=p=0 at the
surface

T7'5 oT o 3/1}) L
P 0P 16macG M

C = integration constant: has to be determined by an appropriate photospheric boundary condition

Dany Page Cooling of Neutron Stars CompStar 2010 School, Caen 50
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Convergence to Zero Solution

unam
) //
lg TA <
C>0 7/ border of
6 9 e convection
radiative C’//
envelopes - C<0
//
//
5 =0 /// W ot
i o s
i N :": ,,‘\ef;,Q \\\9“ \00\10
C=C, & g L o
% " S
p / -
c=C // //
41 z N o
G”Q A < Ok
2l V=Yad convective envelopes
V>V
3 - ' 7 l = P
CONCLUSION: all solutions (for various choices of C) - )
converge toward the “zero solution”: P=T=p at the “surface” T°° = B(P*+C)
One can be sloppy at the surface: no effect deeper inside the star !
In practice: the Eddington boundary condition (Pp= 2gs/3xp) 1s OK
Stellar Structure and Evolution
R. Kippenhahn & A. Weigert, A&A Library, 1990
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Convergence to Zero Solution

unam
Ay o
So/,.- o
lg TA toward IUZIOQS o <

t[I OI]Ve C>0 ~7 border of
6 Qe S convection

oy SO]lIt' A

radiative IOI] s
envelopes o C<0
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i o
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Z o
g § e
c=C // //
41 z N o
C,”Q A < Ok
2l V=Yad convective envelopes
TV>Vy
3 - ' 7 l = il
CONCLUSION: all solutions (for various choices of C) - )
converge toward the “zero solution”: P=T=p at the “surface” T°° = B(P*+C)
One can be sloppy at the surface: no effect deeper inside the star !
In practice: the Eddington boundary condition (Pp= 2gs/3xp) 1s OK
Stellar Structure and Evolution
R. Kippenhahn & A. Weigert, A&A Library, 1990
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Conclusion from all this:

At low densities (near the photosphere) things are very
complicated and one must do a complete detailed
(frequency dependent) radiative transfer calculation to

model the atmosphere correctly and obtain the spectrum.

Deeper into the envelope the diffusion approximation 1s
reliable, one can use frequency averaged Rosseland
means, and the resulting temperature profile 1s
essentially independent of the assumed T profile in the
atmosphere (one can safely use the Eddington
approximation for the atmosphere)

Wednesday, July 7, 2010
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Ingredients:
Thin plane parallel layer with
m=M, r=R

L=4rnR? ¢T,* uniform in

the envelope

Neglect neutrinos

dIr 3 k T,
dP 16713 g,

GM 1
R? \/1-2GM/c2R

gs =

Los Alamos opacity tables
and equation of state for pure iron

log T (K)

The GPE envelope models

GUDMUNDSSON, PETHICK, AND EPSTEIN

I

I

| 1 L | | | | | i | | I 1

I 1 I | 1 i 1 | i I | |

gs =107 cms? —e—e—s— _

. . e

-2 0 2 (A 6 8 10
log p (g cm?)

F1G. 2.—Temperature profiles for three values of the surface temperature 7, and various values of the surface gravity g,

RESULT: “Ty - T¢” relationship. T = T at pg = 101 g cm3

Neutron star envelopes
Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. |., 1982ApJ...259L..19G
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Structure of neutron star envelopes
Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. |. 1983ApJ...272..286G
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CL1L1AIVUDVD ‘q’

dIl' 3 wk T¢
dP 16713 g,

GM 1
R? \/1-2GM/c2R

gs =

Los Alamos opacity tables
and equation of state for pure iron

log T (K)

The GPE envelope models

GUDMUNDSSON, PETHICK, AND EPSTEIN

I

I

|

| | | i |

log p (g cm?)

F1G. 2.—Temperature profiles for three values of the surface temperature 7, and various values of the surface gravity g,

RESULT: “Ty - T¢” relationship. T = T at pg = 101 g cm3

Neutron star envelopes
Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. |., 1982ApJ...259L..19G
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&Ml Physical conditions in the GPE model
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F1G. 1.—Physical conditions at densities and temperatures of interest in the study of neutron star envelopes. The various regions are

identified in the text. Also shown are temperature-density profiles for envelopes for three values of the surface temperature and a surface
gravity of 10'* ¢m s~ 2,

Structure of neutron star envelopes
Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. |. 1983ApJ...272..286G
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=i  Physical conditions in the GPE model

100

log T (K)
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i/
100% Murphy regime:
e partially deg. electrons
e sticky liquid 10ns
e partially 1onized 1ons

| | 1 L I 1 1 1 ‘

F1G. 1.—Physical conditions at densities and temperatures of interest in the study of neutron star envelopes. The various regions are
identified in the text. Also shown are temperature-density profiles for envelopes for three values of the surface temperature and a surface
gravity of 10'* ¢m s~ 2.

Cooling of Neutron Stars
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Structure of neutron star envelopes
Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. |. 1983ApJ...272..286G
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Sources of opacity in the GPE model

log T (K)

logp (g cm )

F1G. 2.—The dominant sources of opacity at various densities and temperatures. Also shown are temperature-density profiles for neutron star
envelopes for three values of the surface temperature and a surface gravity of 10'* ¢cm s~ 2. See text for further explanations.
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&l Sources of opacity in the GPE model
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F1G. 2.—The dominant sources of opacity at various densities and temperatures. Also shown are temperature-density profiles for neutron star
envelopes for three values of the surface temperature and a surface gravity of 10'* ¢cm s~ 2. See text for further explanations.

Structure of neutron star envelopes
Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. |. 1983ApJ...272..286G
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The Sensitivity Strip
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The Sensitivity Strip
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The Sensitivity Strip
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The Sensitivity Strip

What happens 1f the physics
in the sensitivity layer 1s altered:
light elements ?
magnetic fields ?

g

photons transport heat:
very efficient

log T (K)

T =10°°K =

Once heat has passed this
throttle layer 1t can easily
flow out toward the surface

=3
logp (gem™)
Structure of neutron star envelopes
Gudmundsson, E. H.; Pethick, C. J.; Epstein, R. |. 1983ApJ...272..286G
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Light Element Envelopes
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Light Element Envelopes

unam
v
<L _
N Electron thermal
'; 6 - B conductivity, due to e-
9 - - 10n scattering in the
I 1 liquid sensitivity layer:
= 1017 1
- Athht 10~ Msun T )\li el O —
] | A
5 | I TR TR O A I L i i1 1191 I i i 4 1 1.1 I i 41 4 1 1 11
6 S 8 8 10
Log T [K]
AMiight = mass of light 1n the upper envelope
Cooling Neutron Stars with Accreted Envelopes
Chabrier, Gilles; Potekhin, Alexander Y.; Yakovlev, Dmitry G., 1997ApJ...477L..99C
Dany Page Cooling of Neutron Stars CompStar 2010 School, Caen 58

Wednesday, July 7, 2010



Light Element Envelopes
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Light Element Envelopes
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Light Element Envelopes
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Light Element Envelopes
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Light Element Envelopes
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Neutron Star Cooling on a napkin
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Neutron Star Cooling on a napkin

unam

36 L] L] ¥ 1 I L] ¥ 1 L] I ] I L] L] I I L] L] ]

34

33

Lag L [arg a7 ']

32

g L] L] ¥ 1 I L] ¥ 1 L] I ] I L] L] I I L] L] ]

4 5 8
Log t [yre]

ullllllllllllll

~]

Dany Page Cooling of Neutron Stars CompStar 2010 School, Caen 64
Wednesday, July 7, 2010



Neutron Star Cooling on a napkin
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»

Log L [erg 27 ']

Light element envelopes:
star looks warmer during
neutrino cooling era and then
cools faster during photon
cooling era Log t [yrs]
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Heat transport with magnetic field
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T = electron relaxation time
Temperature distribution in magnetized neutron star crusts
U Geppert, M Kueker & D Page, 2004A&A...426..267G
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In the presence of a strong magnetic
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Heat transport with magnetic field
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Magnetized Envelopes

Thinness of envelope = F’ essentially radial: .
only need to calculate F. %

Thermal conductivity in the radial direction:

/{(@B) — cos? Op X K| —I—Sin2 Op X K|

Greenstein & Hartke (1983) proposed to approximate 75(®3p) by:

TH(©p) =T cos*Op + T sin®Op

s || S

Wy,

Where Ts|| ZTs(@BZOO) aIld TleTs(@BZQOO) .
only need to calculate two cases, radial and tangential field, and use the formula to interpolate.

Ts here means the local effective temperature such that F = ¢ 7? at each point on the surface

Dany Page Cooling of Neutron Stars CompStar 2010 School, Caen 66
Wednesday, July 7, 2010



Modern calculations of Ty & T
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Thermal structure and cooling of neutron stars with magnetized envelopes
AY Potekhin & DG Yakovlev, A&A 374, 213 (2001)
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Surface temperature distributions

unam
With the Greenstein-Hartke interpolation formula one can take any field geometry
at the surface (envelope) and calculate the surface temperature distribution:
Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. Il.
l. Dipolar fields D Page & A Sarmiento, Apd 473, 1067 (1996)

D Page, ApJ 442, 273 (1995)
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Surface temperature distributions

With the Greenstein-Hartke interpolation formula one can take any field geometry
at the surface (envelope) and calculate the surface temperature distribution:

Purely dipolar field

(oriented on the equatorial plane
to make a prettier picture !)

[Te.e/7_ T
e
[h

i
Surface temperature of a magnetized neutron star and interpretation of the ROSAT data Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. Il.
l. Dipolar fields D Page & A Sarmiento, Apd 473, 1067 (1996)
D Page, ApJ 442, 273 (1995)

Dany Page
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Surface temperature distributions

With the Greenstein-Hartke interpolation formula one can take any field geometry
at the surface (envelope) and calculate the surface temperature distribution:

Purely dipolar field

(oriented on the equatorial plane
to make a prettier picture !)

[Te.e/7_ T
e
[h

Dipolar +
quadrupolar field

[8.e17_ T
E

6=180° :

Surface temperature of a magnetized neutron star and interpretation of the ROSAT data
l. Dipolar fields

D Page, ApJ 442, 273 (1995)

Dany Page
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D Page & A Sarmiento, Apd 473, 1067 (1996)

Cooling of Neutron Stars CompsStar 2010 School, Caen 68



The star’s effective
temperature 1s then
easily calculated:

L= // opTs(0,0)*dS = 4rR*cT?

(dS = R*-dQ)

T = %//TS(H@)‘WQ

This directly generates a 75 - Te
relationship for any surface
magnetic field geometry

Dany Page Cooling of Neutron Stars
Wednesday, July 7, 2010

Magnetized Ty - Te relationships

Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. Il.
D Page & A Sarmiento, Apd 473, 1067 (1996)
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Magnetized Ty - Te relationships

The star’s effective
temperature 1s then
easily calculated:

L://JBTS(9,¢)4dS = A7 R*cT?

(dS = R*-dQ)
1
4 4
1—1e — E//TS(9,¢) dﬂ
y
This directly generates a 75 - Te Log T, (K)

relationship for any surface
magnetic field geometry

Surface temperature of a magnetized neutron star and interpretation of the ROSAT data. Il.
D Page & A Sarmiento, Apd 473, 1067 (1996)
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Comparison
with Data




Observational data
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Direct Urca with pairing vs data
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Minimal Cooling



Minimal Cooling or, do we need fast cooling ?

Motivation:

Many new observations of cooling neutron stars
with CHANDRA and XMM-NEWTON

Do we have any strong evidence for the
presence of some “exotic” component in
the core of some of these neutron stars ?

Minimal Cooling of Neutron Stars: A New Paradigm Neutrino Emission from Cooper Pairs and Minimal Cooling of Neutron Stars
D. Page, J.M. Lattimer, M. Prakash & A.W. Steiner Page, Dany; Lattimer, James M.; Prakash, Madappa; Steiner, Andrew W.
2004ApJS..155..623P 2009ApJ...707.1131P
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Minimal Cooling or, do we need fast cooling ?

Minimal Cooling assumes:
nothing special happens in the core, i.e.,
no direct URCA, no ot~ or K condensate,
no hyperons, no deconfined quark matter, no ...

(and no medium effects enhance the
modified URCA rate beyond its standard value)
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Minimal Cooling or, do we need fast cooling ?

Minimal Cooling assumes:
nothing special happens in the core, i.e.,
no direct URCA, no ot~ or K condensate,
no hyperons, no deconfined quark matter, no ...

(and no medium effects enhance the
modified URCA rate beyond its standard value)

Minimal Cooling is not naive cooling: J

It takes into account uncertainties due to

* Large range of predicted values of T¢ for n & p.

* Enhanced neutrino emission at T< T, from the Cooper pair
formation mechanism.

* Chemical composition of upper layers (envelope), i.e., iron-peak
elements or light (H, He, C, O, ...) elements, the latter significantly
increasing Te for a given Thp.

e Equation of state.

* Magnetic field.
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Neutrino emission from the breaking
(and formation) of Cooper pairs: “PBF”

'S R
4GEm’ P, 5
Q= 157/;577/10C6 (kBT)7NVa/.J'FJ [A/(T)/T] é 0.5 |
erg m; PF.i 2
— 351 x 104! ’ ’ T a F [ANT)/T
3.51 x 10 o3 < (m,-)(m,-C)x 0di,j J[ (T)/T]
y 0 e

C 0.z 04 06 0.8 1
T/T,

Neutrino pair emission from finite-temperature neutron superfluid and the cooling of neutron stars
E Flowers, M Ruderman & P Sutherland, 1976ApJ...205..541F

Voskresensky D., Senatorov A., 1986, Sov. Phys.—JETP 63, 885
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Without pairing
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Basic effects of pairing on the cooling

With pairing but no PBF

Without pairing

c 1 2 3 4 5 6 7
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Minimal cooling versus data
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Observational data
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Conclusions

@® Many possibilities for fast neutrino emission.

@ Neutrino emission can be strongly suppressed by pairing.

@ Fast cooling scenarios are compatible with if T¢ for pairing is large enough.

@ Minimal Cooling: most observed isolated cooling neutron stars are OK
if the neutron 3P2 gap has the correct size.
If not about 50% of them require some faster neutrino emission.

@ Afew serious candidates for neutrino cooling beyond minimal.
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