

unam

Pulsares Y Estrellas de Neutrones

Dany Page Instituto de Astronomía Universidad Nacional Autónoma de México

Estrellas de Neutrones

- Pulsares
- Supernovas
- Campos Magnéticos
- Binarias de Rayos X

Valle de México

Diámetro: ~ 25 km

Masa: 1 a 2 Mo

Diámetro: ~ 25 km

Densidad central: ~ 10¹⁵ g cm⁻³ (mil millones de toneladas por cm³ !)

Masa: 1 a 2 Mo

Diámetro: ~ 25 km

Densidad central: ~ 10¹⁵ g cm⁻³ (mil millones de toneladas por cm³ !)

Masa: 1 a 2 Mo

Diámetro: ~ 25 km

Una cucharada de materia de estrella de neutrones pesa mas que todos los edificios de la Ciudad de México 5

... va camino hacia la UNAM

... va camino hacia la UNAM

Atmósfera y Oceano

... va camino hacia la UNAM

Atmósfera y Oceano

... va camino hacia la UNAM Atmósfera y Oceano Corteza metálica (~ 1 km)

... va camino hacia la UNAM Atmósfera y Oceano Corteza metálica (~ 1 km) Carozo: ρ > ρnuc (ρnuc = 2.8x10¹⁴ g cm⁻³) ... va camino hacia la UNAM Atmósfera y Oceano Corteza metálica (~ 1 km) Carozo: $\rho > \rho_{nuc}$ ($\rho_{nuc} = 2.8 \times 10^{14} \text{ g cm}^{-3}$) Superfluido

... va camino hacia la UNAM Atmósfera y Oceano Corteza metálica (~ 1 km) Carozo: $\rho > \rho_{nuc}$ $(\rho_{nuc} = 2.8 \times 10^{14} \text{ g cm}^{-3})$ Superfluido

Superfluido en estrellas de neutrones: postulado en 1959 por A. Migdal

Primera evidencia observacional: enfriamiento de "Cas A"

Las Estrellas de Neutrones Existen

Consideremos el pulsar mas rápido conocido: PSR J1748.2448aD en Terzan 5: periodo rotacional P=1.39 ms

Velocidad en el equador < velocidad de la luz:

$$v_{\text{equator}} = \Omega R = \frac{2\pi R}{P} < c \Longrightarrow R < 2\pi cP = 65 \text{ km}$$

Las Estrellas de Neutrones Existen

Consideremos el pulsar mas rápido conocido: PSR J1748.2448aD en Terzan 5: periodo rotacional P=1.39 ms

Velocidad en el equador < velocidad de la luz:

$$v_{\text{equator}} = \Omega R = \frac{2\pi R}{P} < c \Longrightarrow R < 2\pi cP = 65 \text{ km}$$

Acceleración gravitacional: agravedad > acentrifuga en el equador:

$$a_{\text{gravity}} = \frac{GM}{R^2} > a_{\text{centrifugal}} = \Omega^2 R = \frac{4\pi^2 R}{P^2} \quad \text{or} \quad \frac{M}{R^3} > \frac{4\pi^2}{GP^2}$$
$$\implies \overline{\rho} = \frac{M}{\frac{4}{3}\pi R^3} > 8 \times 10^{13} \text{ g cm}^{-3}$$

El Descubrimiento del Primer Pulsar (1967)

Jocelyn Bell

El Descubrimiento del Primer Pulsar (1967)

Jocelyn Bell

El Radio-Telescopio de Effelsberg (Bonn)

El Pulsar del Cangrejo

Solo un pugnado de pulsares se ven en el óptico: la gran mayoría se had descubierto en ondas radio

El Pulsar del Cangrejo

Solo un pugnado de pulsares se ven en el óptico: la gran mayoría se had descubierto en ondas radio

El Espectro Electromagnético

Chandra

Lanzado el 23 de julio de 1999

¿ Que es un pulsar?

Un pulsar, "PSR", es una ESTRELLA de NEUTRONES con un periodo de rotación o "espín", P, medido Es todo.

¿ Que es un pulsar ?

Un pulsar, "PSR", es una ESTRELLA de NEUTRONES con un periodo de rotación o "espín", P, medido

Es todo.

¿ Que es un pulsar?

Un pulsar, "PSR", es una ESTRELLA de NEUTRONES con un periodo de rotación o "espín", P, medido

Es todo.

Un PSR puede ser un

- Pulsar radio

- Pulsar óptico

- Pulsar de rayos X

- Pulsar de rayos gamma

Pulsar de neutrinos
Pulsar de ondas gravitacionales

y puede ser aislado o binario. En un sistema binario puede estar acretando, o no acretando o puede a veces estar acretando y luego ya no, ...

¡ Todavía no

detectados!

¿ Que es un pulsar ?

Un pulsar, "PSR", es una ESTRELLA de NEUTRONES con un periodo de rotación o "espín", P, medido

Pulsar de neutrinos
 Pulsar de ondas gravitacionales

y puede ser aislado o binario. En un sistema binario puede estar acretando, o no acretando o puede a veces estar acretando y luego ya no, ...

; Todavía no

detectados !

¿ Que es un pulsar ?

Un pulsar, "PSR", es una ESTRELLA de NEUTRONES con un periodo de rotación o "espín", P, medido

Es todo La <u>inmensa</u> mayoría de las estrellas de neutrones no son pulsares. La mayoría de las estrellas de neutrones <u>conocidas</u> son pulsares.

Hay unas 10¹¹ estrellas en la Vía Láctea y un 1% de ellas (10⁸-10⁹) son estrellas de neutrones 0.1% de ellas (10⁴-10⁵) han de ser pulsares de los cuales unos 2000 han sido detectados.

10

S

Un Pulsar y su Magnetosfera

Estrella de neutrones Magnetosfera y líneas de campo magnético de rotación Ø 2004 The Trustees of Amherst College. www.amherst.edu/ ~gsgreenstein/progs/animations/pulsar_beacon/ Ш Ш

Un Pulsar y su Magnetosfera

Estrella de neutrones Magnetosfera y líneas de campo magnético de rotación Ø 2004 The Trustees of Amherst College. www.amherst.edu/ ~gsgreenstein/progs/animations/pulsar_beacon/ Ш Ш

El Modelo Magneto-Dipolar de Frenado I

$$R_{lc} = \frac{c}{\Omega} = \frac{cP}{2\pi} \simeq 50 \text{ km} \times P_{\text{millisec.}}$$
$$B_{lc} \cong B_0 \left(\frac{R}{R_{lc}}\right)^3 = \frac{B_0 R^3}{c^3} \Omega^3$$
$$E_{m, lc} = \frac{B_{lc}^2}{4\pi} = \frac{B_0^2 R^6}{4\pi c^6} \Omega^6$$

$$\dot{E}_{\rm md} \sim -A_{lc} E_{m, lc} c \simeq \frac{B_0^2 R^6}{c^3} \Omega^4 \quad \text{con} \quad A_{lc} \simeq 4\pi R_{lc}^2$$

Radiación magneto-dipolar $\dot{E}_{md}^{vac.} = -\frac{B_p^2 R^6 \Omega^4}{c^3} \times \frac{1}{6} \sin^2 \alpha$ en el vacío:

El Modelo Magneto-Dipolar de Frenado II

Energía cinética de rotación $E_{\rm rot} = \frac{1}{2}I\Omega^2 \implies \dot{E}_{\rm rot} = I\Omega\dot{\Omega}$

Ecuación de frenado magneto-dipolar: $\dot{E}_{rot} = -\dot{E}_{md}$

nos da:
$$\dot{\Omega} = -k \frac{B_0^2 R^6}{c^3 I} \Omega^3 \quad (k \simeq 1)$$

Campo magnético superficial:

$$B_p \simeq \sqrt{\frac{c^3 |\dot{\Omega}|}{\Omega^3 I R^6}}$$

 $\simeq 3.2 \times 10^{19} (P\dot{P})^{1/2} \text{ G} \simeq 1.5 \times 10^{12} \frac{P}{0.01 \text{s}} \left(\frac{1000 \text{ yr}}{\tau_c}\right)^{1/2} \text{ G}$

El diagrama P-P

 $\operatorname{Log} P[\mathbf{s}]$
El diagrama P-P

constante $\tau_{\rm c}$ -íneas de edad dinámica

El diagrama P-P

T

constante m magnético <u>íneas de campo</u>

Chandra: rayos X

El Pulsar del Cangrejo

Chandra: rayos X

El Pulsar del Cangrejo y su maquinaria en acción

Animación "artística"

La animación usa observaciones realizadas en unos 7 meses

Credit: NASA/CXC/ASU/J.Hester et al.

Chandra: rayos X

El Pulsar del Cangrejo y su maquinaria en acción

Animación "artística"

La animación usa observaciones realizadas en unos 7 meses

Credit: NASA/CXC/ASU/J.Hester et al.

unam

Betelgeuse una estrella masiva a punto de explotar

Imagen del Telescopio Espacial (HST)

La Supernova SN 1987A

Descubierta el 23 de febrero de 1987 por Ian Shelton (Observatorio Las Campanas, Chile)

Una supernova emita mas luz (durante unos días) que toda un galaxia.

Remanentes de Supernovas ``Vela" y ``Puppis A"

Imágenes de satélite de rayos X Rosat

Remanente de Supernova "Cassiopeia A" Optico (Hubble Space Telescope)

Image Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: R. Fesen (Dartmouth) and J. Morse (Univ. of Colorado

Remanente de Supernova "Cassiopeia A" Optico (Hubble Space Telescope)

Image Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: R. Fesen (Dartmouth) and J. Morse (Univ. of Colorado

Remanente de Supernova "Cassiopeia A' Optico (Hubble Space Telescope)

Remanente mas joven conocido: expansión da ~300 años

Supernova probablemente observada por J. Flamsteed en 1680

Proviene de la explosión de una estrella de unas 20-25 Mo

Image Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: R. Fesen (Dartmouth) and J. Morse (Univ. of Colorado

Cassiopeia A: primera luz de Chandra

Remanente de Supernova "Cassiopeia A" Rayos X ("Primera luz" de Chandra, 1999)

Remanente de Supernova "Cassiopeia A" Rayos X ("Primera luz" de Chandra, 1999)

Remanente de Supernova "Cassiopeia A" Rayos X ("Primera luz" de Chandra, 1999)

- Estrella de neutrones mas joven conocida.
- 12 años de observaciones por Chandra: T_e bajó un 5% !
- Enfriamiento rápido debido a emisión de neutrinos por la transición de fase de sus neutrones al estado superfluido.
- Superfluido mas denso conocido (10¹⁵ g cm⁻³) a la fecha y temperatura crítica mas alta: T_c ~ 500,000,000 K

Credit: Chandra X-ray Observatory, NASA

Campos Magnéticos

Campo magnético terrestre	0.6 Gauss
Iman de refrigerador	100 G
Electro-iman de IRMN Manchas solares	10,000 G = 10 ⁴ G
Campo persistente mas fuerte producido por electro-imanes	5x10 ⁵ G
Campo mas fuerte producido en laboratorio	10 ⁶ - 10 ⁷ G
Enanas blancas ultra-magnetizadas	10 ⁹ G
Campo magnético en pulsares muy viejos	10 ⁸ -10 ⁹ G
Campo magnético de un pulsar típico	10 ¹² G
Campo magnetico de un magnetar	10 ¹⁵ G
Máximo campo magnético teoricamente posible (efectos cuánticos)	10 ²⁴ G

os cuánticos) 10²⁴ G

0.6 Gauss Campo magnético terrestre Iman de refrigerador 100 G $10,000 \text{ G} = 10^4 \text{ G}$ Electro-iman de IRMN | Manc 5x10⁵ G Campo persistente mas fuerte 10⁶ - 10⁷ G Campo mas fuerte producido e 10⁹ G Enanas blancas ultra-magnetiz 10⁸-10⁹ G Campo magnético en pulsares may nejos 10¹² G Campo magnético de un pulsar típico 10¹⁵ G Campo magnetico de un magnetar Máximo campo magnético teoricamente posible (efectos cuánticos) 10²⁴ G

Campos Magnéticos: tabla comparativa

Campo magnético terrestre Iman de refrigerador Electro-iman de IRMN | Mancha Campo persistente mas fuerte pro and ignore it. Campo mas fuerte producido en la Enanas blancas ultra-magnetizadas Campo magnético en pulsares muy viejos Campo magnético de un pulsar típico Campo magnetico de un magnetar Máximo campo magnético teoricamente posible (efectos cuánticos)

0.6 Gauss
100 G
10,000 G = 10 ⁴ C
5x10 ⁵ G
10 ⁶ - 10 ⁷ G
10 ⁹ G
10 ⁸ -10 ⁹ G
10 ¹² G
10 ¹⁵ G
10 ²⁴ G

Iman de refrigerador100 GElectro-iman de IRMN Manchas solares10,000 G = 10Campo persiste Campo mas fue Enanas blancas Campo magnéti5x10 ⁵ GCampo magnéti10 ⁶ - 10 ⁷ GCampo magnéti10 ⁸ -10 ⁹ GCampo magnético teoricamente posible (efectos cuánticos)10 ² G	Campo magnético terrestre	0.6 Gauss
Electro-iman de IRMN Manchas solares10,000 G = 10Campo persiste Campo mas fue Enanas blancas Campo magnéti5x10 ⁵ GCampo magnéti10 ⁶ - 10 ⁷ GCampo magnéti10 ⁹ GCampo magnético de un magnetar10 ¹⁵ GMáximo campo magnético teoricamente posible (efectos cuánticos)10 ²⁴ G	Iman de refrigerador	100 G
Campo persiste Campo mas fue Enanas blancas Campo magnéti5x10 ⁵ GCampo magnéti10 ⁶ - 10 ⁷ GCampo magnéti10 ⁸ -10 ⁹ GCampo magnéti10 ¹² GCampo magnético de un magnetar10 ¹⁵ GMáximo campo magnético teoricamente posible (efectos cuánticos)10 ²⁴ G	Electro-iman de IRMN Manchas solares	10,000 G = 10 ⁴ G
Campo mas fue Enanas blancas Campo magnéti10° - 10° G 10° G	Campo persiste	5x10 ⁵ G
Enanas blancas Campo magnéti10° GCampo magnéti10°-10° GCampo magnéti101° GCampo magnético de un magnetar101° GMáximo campo magnético teoricamente posible (efectos cuánticos)1024 G	Campo mas fue	10 ⁶ - 10 ⁷ G
Campo magnéti108-109 GCampo magnéti1012 GCampo magnetico de un magnetar1015 GMáximo campo magnético teoricamente posible (efectos cuánticos)1024 G	Enanas blancas	10 ⁹ G
Campo magnéti1012 GCampo magnetico de un magnetar1015 GMáximo campo magnético teoricamente posible (efectos cuánticos)1024 G	Campo magnéti	10 ⁸ -10 ⁹ G
Campo magnetico de un magnetar1015 GMáximo campo magnético teoricamente posible (efectos cuánticos)1024 G	Campo magnéti	10 ¹² G
Máximo campo magnético teoricamente posible (efectos cuánticos) 10 ²⁴ G	Campo magnetico de un magnetar	10 ¹⁵ G
	Máximo campo magnético teoricamente posible (efectos cuánticos)	10 ²⁴ G

Campo magnético terrestre

Iman de refrigerador

Electro-iman de IRMN | Manchas solares

Campo persistente mas fuerte producido por electro-imanes

 $10,000 \text{ G} = 10^4 \text{ G}$

0.6 Gauss

100 G

5x10⁵ G

Campo magnético terrestre	0.6 Gauss
Iman de refrigerador	100 G
Electro-iman de IRMN Manchas solares	10,000 G = 10 ⁴ G
Campo persistente mas fuerte producido por electro-imanes	5x10 ⁵ G
Campo mas fuerte producido en laboratorio	10 ⁶ - 10 ⁷ G
Enanas blancas ultra-magnetizadas	10 ⁹ G
Campo magnético en pulsares muy viejos	10 ⁸ -10 ⁹ G
Campo magnético de un pulsar típico	10 ¹² G
Campo magnetico de un magnetar	10 ¹⁵ G
Máximo campo magnético teoricamente posible (efectos cuánticos)	10 ²⁴ G

Campo magnético terrestre

Iman de refrigerador

Electro-iman de IRMN | Manchas sol Campo persistente mas fuerte produci Campo mas fuerte producido en labor Enanas blancas ultra-magnetizadas Campo magnético en pulsares muy vie Campo magnético de un pulsar típico

Campo magnetico de un magnetar

Máximo campo magnético teoricamente posible (efectos cuánticos)

0.6 Gauss

100 G

10²⁴ G

Campo magnético terrestre

Iman de refrigerador

Electro-iman de IRMN | Manchas sol Campo persistente mas fuerte produci Campo mas fuerte producido en labor Enanas blancas ultra-magnetizadas Campo magnético en pulsares muy vie Campo magnético de un pulsar típico

Campo magnetico de un magnetar

Máximo campo magnético teoricamente posible (efectos cuánticos)

0.6 Gauss

100 G

10²⁴ G

Campo magnético terrestre

Iman de refrigerador

Electro-iman de IRMN | Manchas solare Campo persistente mas fuerte producido

Campo mas fuerte producido en laborato Enanas blancas ultra-magnetizadas

Campo magnético en pulsares muy viejo

Campo magnético de un pulsar típico

Campo magnetico de un magnetar

Máximo campo magnético teoricamente posible (efectos cuánticos)

0.6 Gauss

100 G

 $10,000 \text{ G} = 10^4 \text{ G}$ 5x10⁵ G 10⁶ - 10⁷ G 10⁹ G 10⁸-10⁹ G 10¹² G 10¹⁵ G 10²⁴ G

Magnetares: destellos de rayos y

Magnetares: destellos de rayos y

Solar magnetic field lines. Credit: Lebedev Physical Institute, Russian Academy of Sciences)

Sun protuberance. Credit: Lebedev Physical Institute, Russian Academy of Sciences)

Rompimiento de la corteza sólida

Coronal mass ejection. Credit: NASA/ESA SOHO, Instrument LASCO on SOHO (Large Angle and Spectrometric COronagraph)

Campo magnético terrestre	0.6 Gauss
Iman de refrigerador	100 G
Electro-iman de IRMN Manchas solares	10,000 G = 10 ⁴ G
Campo persistente mas fuerte producido por electro-imanes	5x10 ⁵ G
Campo mas fuerte producido en laboratorio	10 ⁶ - 10 ⁷ G
Enanas blancas ultra-magnetizadas	10 ⁹ G
Campo magnético en pulsares muy viejos	10 ⁸ -10 ⁹ G
Campo magnético de un pulsar típico	10 ¹² G
Campo magnetico de un magnetar	10 ¹⁵ G
Máximo campo magnético teoricamente posible (efectos cuánticos)	10 ²⁴ G

Binarias de Rayos X: Región del Centro Galáctico

La Vía Láctea desde San Pedro Mártir (Stéphane Guisard)

Binarias de Rayos X en el Centro Galáctico

Observaciones del Rossi X-Ray Timing Explorer (RXTE)

Binarias de Rayos X: Región del Centro Galáctico

La Vía Láctea desde San Pedro Mártir (Stéphane Guisard)

Binarias de Rayos X en el Centro Galáctico

Observaciones del Rossi X-Ray Timing Explorer (RXTE)

Simulaciones de binarias con acreción

Simulaciones de binarias con acreción

Observación de la fuente XTE J1701-462 por el ASM ("All Sky Monitor") del RXTE

Observación de la fuente XTE J1701-462 por el ASM ("All Sky Monitor") del RXTE

por el ASM ("All Sky Monitor") del RXTE

Observación de la fuente XTE J1701-462 por el ASM ("All Sky Monitor") del RXTE

53

de la estrella de neutrones

Estrellas de Neutrones

Transitoria

RXTE

 Swift O Chandra × XMM

40

20

54

BINARIA de RAYOS X de MASA ALTA (CENTAURO X-3)

Aurora Boreal

El interior de una estrella de neutrones

Contiene un 90% de neutrones y un 10% de protones

¿ De nucleones a quarks ?

El aumento de presión por la gravedad en el centro puede llevar al desconfinamiento de los quarks

Estrella de Neutrones

Quarks

Tepoz

Distrito Federal Ciudad de México

Chalico

Tlalnepantla

-Image © 2008 TerraMetrics © 2008 Europa Technologies Image © 2008 DigitalGlobe Image NASA

E

Quarks

uarks

Tepoz

Estrella de Neutrones

Atmósfera Corteza Núcleo

A la fecha no hay evidencia seria de la existencia de estrellas de quarks

Estrella de Quarks

Distrito Federal

Tlalnepantla

Image © 2008 TerraMetrics © 2008 Europa Technologies Image © 2008 DigitalGlobe Image NASA

Chalico

Ciudad de México

Page

¿ Que chinann pasa cuando el D.F. cae en una cucharita ?

