Hydrogen Molecule in a Weak Magnetic Field

Nicolais L. Guevara

MAGNETIC FIELDS and NEUTRON STAR SURFACE Cocoyoc, Mexico, February 12-14, 2007

- ◆ In quantum systems, the quantum numbers of the ground state can depend on values of an external parameter in the Hamiltonian.
 - Particular case: behavior of the quantum numbers of the ground state of two-electron atomic and molecular systems in a magnetic field.

$$B=0$$

Standard situation \Rightarrow Spin singlet ground state (total spin is zero)

$$B > B_c$$

⇒ Spin triplet ground state (total spin is one) (spins are oriented against the magnetic field)

Chemistry in magnetic field

(overview)

- ◆ Possible formation of exotic linear systems in strong magnetic field (polymers)
 (Kadomtsev-Kudryavtsev '71, Ruderman '71)
 - H_2 , H_3 , H_4 ,... can exist in strong magnetic field (Salpeter et al '92)
 - $H_3^{(2+)}$, $He_2^{(3+)}$,... can exist in magnetic field $B \gtrsim 10^{11} G$. A. Turbiner, J.C. Lopez Vieyra. Phys. Report. 424, 309(2006)

Where ?

Neutron star atmospheres (possible candidate)

Magnetic Field

$$0.5 \ G \qquad 10^5 \ G \qquad 10^7 \ G \qquad 10^6 - 10^9 \ G \quad 10^{12} - 10^{13} \ G$$

Scales

Magnetic field of the order of atomic magnetic field: (cycloton radius \sim Bohr radius)

$$B \sim B_0 = \frac{m_e^2 e^3 c}{\hbar^3} = 2.35 \times 10^9 G \equiv 1a.u.$$
 (1)

(Measure unit of magnetic field)

Magnetic field in which the cycloton energy is comparable with the electron rest mass

$$B \le B_{rel} = \frac{m_e^2 c^3}{\hbar e} = 4.414 \times 10^{13} G \tag{2}$$

 $(\ no\ contributions\ from\ relativistic\ effect)$

Neutron star (1E1207.4-5209)

Chandra X-ray Observatory (D. Sanwal, G. G. Pavlov, V. E. Zavlin and M. E. Teter, Apj, 574, L61(2002))

Two absorption features:

$$E_1 = 730 \pm 100 \text{ eV}$$
 $E_2 = 1400 \pm 130 \text{ eV}$
$$T \sim 10 - 100 \text{eV} \quad (10^5 - 10^6 \text{ K})$$

$$B \sim 10^{12} - 10^{13} \text{ G}$$

Objective

◆ Study of the ground state of the hydrogen molecule in a magnetic field:

$$(ppee) \Rightarrow H_2,$$

Method

- ♦ Variational method
- ♦ A simple and unique trial function for all the range of magnetic fields

How to choose the trial function ψ_{trial} ?

Trial Function ψ_{trial}

Potential

$$V_{trial} \equiv \frac{\nabla^2 \psi_{trial}}{\psi_{trial}}$$

It should reproduce:

- ♦ Coulomb singularity $(1/r, 1/r_{12})$
- ♦ Asymptotic behavior at large distance Harmonic oscillator $|x|, |y| \to \infty$

Symmetries

Identical charge centers:

 ψ_{trial} is symmetric (antisymmetric) under charge permutations

Technical Aspects

- ◆ Variational calculations imply two steps
 - Multidimensional Numerical Integration
 - Minimization

- Integration subroutine
 - Adaptive multidimensional integration NAG-LIB
 - Manual partition of the integration domain in subdomain to reproduce the integrand profile in an optimal way
- Minimization subroutine
 - MINUIT CERN-LIB
- ◆ Computational resources: estándar PC and Cluster
 - \Rightarrow (Parallelization)

(Parallel configuration) (ppee)

Hamiltonian

$$\mathcal{H} = \sum_{\ell=1}^{2} \left(-\nabla_{\ell}^{2} + \frac{B^{2}}{4} \rho_{\ell}^{2} \right) - \sum_{\ell,\kappa} \frac{2}{r_{\ell\kappa}} + \frac{2}{r_{12}} + \frac{2}{R} + B(\hat{L}_{z} + 2\hat{S}_{z}),$$

H_2 : Classification of states

$$2S+1M_p$$

$$m = 0$$

$$^{1}\Sigma_{g}$$
 , $^{1}\Sigma_{u}$, $^{3}\Sigma_{g}$, $^{3}\Sigma_{u}$

$$m = -1$$

$${}^{1}\Pi_{g}\ ,\, {}^{1}\Pi_{u}\ ,\, {}^{3}\Pi_{g}\ ,\, {}^{3}\Pi_{u}$$

$$m = -2$$

$$^{1}\Delta_{g}$$
 , $^{1}\Delta_{u}$, $^{3}\Delta_{g}$, $^{3}\Delta_{u}$

Trial function for the ground state $({}^{1}\Sigma_{g})$:(B=0)

$$\psi^{(trial)} = A_1 \psi_1 + A_2 \psi_2 + A_3 \psi_3$$

$$\psi_1 = (1 + P_{12})(1 + P_{ab})e^{-\alpha_1 r_{1a} - \alpha_2 r_{1b} - \alpha_3 r_{2a} - \alpha_4 r_{2b} + \gamma_1 r_{12}},
\psi_2 = (1 + P_{12})e^{-\alpha_5 (r_{1a} + r_{2b}) - \alpha_6 (r_{1b} + r_{2a}) + \gamma_2 r_{12}},
\psi_3 = (1 + P_{12})e^{-\alpha_7 (r_{1a} + r_{1b}) - \alpha_8 (r_{2a} + r_{2b}) + \gamma_3 r_{12}}$$

 ψ_2 is a degeneration of ψ_1 when $\alpha_1 = \alpha_4, \alpha_2 = \alpha_3 \ (\rightarrow 'H + H')$ ψ_3 is a degeneration of ψ_1 when $\alpha_1 = \alpha_2, \alpha_3 = \alpha_4 \ (\rightarrow 'H_2^+ + e')$ $\psi_1 \rightarrow \text{non-linear interpolation between } \psi_2 \text{ and } \psi_3$

 P_{12} electron interchange $(1 \leftrightarrow 2)$

 P_{ab} proton interchange a and b

$$f_1(r_{12}) = 1 + r_{12} \to V_{trial}^1(r_{12}) \approx \frac{1}{r_{12}(1 + r_{12})},$$

$$f_2(r_{12}) = \exp(\gamma r_{12}^2) \to V_{trial}^2(r_{12}) \approx r_{12}^2,$$

$$f_3(r_{12}) = \exp(-\alpha r_{12}) \to V_{trial}^3(r_{12}) \approx \frac{1}{r_{12}}$$

only factor $f_3(r_{12})$ fulfills the above requirement.

H_2 : Ground state($^1\Sigma_g$)(B=0)

E_T (Ry)	$< r_{12}^{-1} >$	$ < r_1^2 > $
-2.34697 ^a		
-2.34778 ^b		
-2.348382 ^c		2.5347
-2.348393 ^d	0.5874	2.5487
$-2.34888 ^{\mathrm{e}}$	0.5874	
-2.34895 f		

^a James and Coolidge, 14 parameters

 r_1 is the distance from 1st electron to the mid-point between protons.

Simple and compact few-parametric trial function(it can be modified to study different states)

Most accurate Born-Oppenheimer energy for H_2 (based on few-parametric (≤ 14) trial functions)

We were able to design a computer code for multidimensional numerical integration with high accuracy.

 $[^]b$ Heidelberg group, > 200 non spherical gaussian orbitals

 $^{^{}c}$ W. Kolos and C.C.J. Roothan using James- Coolidge type functions, ${\bf 14}$ parameters

^d Present work, (A. Turbiner, N.Guevara, 14 parameters) (physics/0606120)

^e W. Kolos and C.C.J. Roothan (the BO ground state energy with 40 variational parameters)

^f Sims and Hangstrom. 7034 James-Coolidge type terms (**best result**)

Trial Functions: (B > 0)

$$\psi^{(trial)} = A_1 \psi_1 + A_2 \psi_2 + A_3 \psi_3$$

$$\begin{split} \psi_1 &= (1 + \sigma_e P_{12})(1 + \sigma_N P_{ab}) e^{-\alpha_1 r_{1a} - \alpha_2 r_{1b} - \alpha_3 r_{2a} - \alpha_4 r_{2b} - B\beta_1 \frac{\rho_1^2}{4} - B\beta_2 \frac{\rho_2^2}{4} + \gamma_1 r_{12}} \,, \\ \psi_2 &= (1 + \sigma_e P_{12}) e^{-\alpha_5 (r_{1a} + r_{2b}) - \alpha_6 (r_{1b} + r_{2a}) - B\beta_3 \frac{\rho_1^2}{4} - B\beta_4 \frac{\rho_2^2}{4} + \gamma_2 r_{12}} \,, \\ \psi_3 &= (1 + \sigma_e P_{12}) e^{-\alpha_7 (r_{1a} + r_{1b}) - \alpha_8 (r_{2a} + r_{2b}) - B\beta_5 \frac{\rho_1^2}{4} - B\beta_6 \frac{\rho_2^2}{4} + \gamma_3 r_{12}} \end{split}$$

 $\sigma_e = 1 \text{ spin singlet}(S = 0)$

 $\sigma_e = -1 \text{ spin triplet } (S = 1)$

 $\sigma_N=1$ nuclear gerade state

 $\sigma_N = -1$ nuclear ungerade state

 α_{1-8} , β_{1-6} and γ_{1-3} variational parameters

Total of variational parameters (20)

Low-lying states of H_2 in a weak magnetic field

$$1\Sigma_g$$
, $3\Sigma_u$ states

B(a.u.)	$E_T (^1\Sigma_g)$	R_{eq}	$E_T(^3\Sigma_u)$
0	-2.34839	1.4	-2.0
	-2.34778^a		
0.1	-2.34097	1.397	-2.1901
	-2.33930^a		
0.2	-2.31869	1.385	-2.3615
	-2.317532^a		
0.5	-2.17884	1.332	-2.7888
	-2.17816^a		
1.0	-1.78083	1.237	-3.3247
	-1.78067^a		

a Heidelberg group

Crossing between the $^1\Sigma_g$ and $^3\Sigma_u$ states

Low-lying states of H_2 in a weak magnetic field

Low-lying states of H_2 in a weak magnetic field

Hydrogen Molecule: Ground State

Parallel configuration is the optimal one,

Two-electron atomic systems

He: Ground state

 H^- : Ground state

Schmelcher et al Phys. Rev. A 61, 063413(2000), J. Phys. B, 32, 1557(1999), J. Phys. B, 33, 545(2000)

Conclusions

- 1. Simple and physically adequate trial function can give high accuracy for the energy in the variational calculations.
- 2. Quantum numbers of the ground state depend on the magnetic field strength: for weak magnetic fields ($^{1}\Sigma_{g} \rightarrow ^{3}\Sigma_{u}$) for the hydrogen molecule.
- 3. The hydrogen molecule that exists for the field-free case becomes unbound for stronger magnetic field $(B \geq 0.18a.u.)$

Is the $^3\Sigma_u$ state the ground state for stronger magnetic field?

Do all two-electron hydrogen molecular systems (H_3^+) and H_4^{2+} show the same behavior?

Future:

Studies of other two-electron molecular systems: $H_4^{2+}, H_5^{3+}, (H-He-H)^{2+}, (He-H-He)^{3+}, He_3^{4+},$ etc.