

The Magnificent Seven -

Nearby Cooling Neutron Stars with 1013 Gauss Magnetic Fields

Frank Haberl Max-Planck-Institut für extraterrestrische Physik (MPE), Garching

The ROSAT discovery of thermal, radio quiet isolated neutron stars New XMM-Newton and Chandra observations

- Magnetic field estimates
 - Absorption features in the X-ray spectra
 - Pulse timing
- The case of RX J0720.4-3125
 - Spectral variations on long-term time scales
 - Evidence for free precession

Fenomec Mini Workshop on Magnetic Fields and Neutron Stars Surface Cocoyoc, Mexico, February 12 - 14, 2007

The Magnificent Seven: Thermal, radio-quiet neutron stars

The X-ray spectrum of RX J1856.5–3754

Haberl (2006)

Thermal, radio-quiet isolated neutron stars

- Soft X-ray sources in ROSAT survey + optically faint \rightarrow isolated neutron stars
- Blackbody-like X-ray spectra, NO non-thermal hard emission
- Low absorption ~ 10^{20} H cm⁻² \rightarrow nearby (2 cases with measured parallax)
- Luminosity ~10³¹ erg s⁻¹
- Constant X-ray flux on time scales of years
- No obvious association with SNR
- No (faint?) radio emission (RBS1223, RBS1774)
- Probably all are X-ray pulsars (3.45 11.37 s)

Best candidates for "genuine" cooling INSs with undisturbed emission from stellar surface

Object	T/10 ⁶ K	kT/eV	P/s	Optical	PM/mas/y	distance/pc
RX J0420.0–5022	0.51	44	3.45	B = 26.6		
RX J0720.4–3125	0.99-1.10	85-95	8.39	B = 26.6	97	330 +170/-80
RX J0806.4-4123	1.11	96	11.37	B > 24		
RX J1308.8+2127*	1.00	86	10.31	$m_{50ccd} = 28.6$	5	
RX J1605.3+3249	1.11	96	6.88?	B = 27.2	145	
RX J1856.5–3754	0.73	62	7.06	B = 25.2	332	161 +18/-14
RX J2143.0+0654**	* 1.17	102	9.44	B > 26		

RX J1856.5-3754: optical

Distance 161 +18/-14 pc

HST

High proper motion: Not heated by accretion of ISM !! Cooling isolated neutron star

van Kerkwijk & Kaplan (2006)

Bowshock Nebula

VLT

Powered by magnetic dipole braking: $dE/dt = 4.5x10^{32} \text{ erg s}^{-1}, t = 5x10^5 \text{ y}$ $B \approx 10^{13} \text{ G}$

> Braje & Romani (2002) Trümper et al. (2004)

XMM-Newton observations of the M7: absorption features

Evidence for multiple lines:

RX J1605.3+3249: Evidence for three lines

RX J1605.3+3249: Three absorption lines with regular energy spacing Line energies: **Absorbed line fluxes:** $N_1 = -(4.3 \pm 0.1) \cdot 10^{-3} \text{ ph/cm}^2/\text{s}$ $E_1 = 403 \pm 2 \text{ eV}$ $EQW_1 = 96 eV$ $N_2 = -(8.0 \pm 0.8) \cdot 10^{-4} \text{ ph/cm}^2/\text{s}$ $E_2 = 589 \pm 4 \text{ eV}$ $EQW_2 = 76 eV$ $E_3 = 780 \pm 24 \text{ eV}$ $EQW_3 = 67 eV$ $N_3 = -(1.6 \pm 0.4) \cdot 10^{-5} \text{ ph/cm}^2/\text{s}$ $E_2/E_1 = 1.46 \pm 0.02$ $N_1/N_2 = 5.38 \pm 0.54$ $E_3/E_1 = 1.94 \pm 0.06$ $N_2/N_3 = 5.00 \pm 1.35$ $E_3/E_2 = 1.32 \pm 0.04$ $N_1: N_2: N_3 \sim 25: 5: 1$ (common line $\sigma = 87 \text{ eV}$) $E_1: E_2: E_3 = 1: 1.5: 2$ 0569 RGS1 9 0569 LW thin 0589 LW thicl Counts 0.1

0.5

Channel Energy (keV)

RBS1223: Evidence for lines at 230 eV and at 460 eV (Schwope et al. 2006, London) RX J0806.4-4123: also two lines?

0.5

Channel Energy (keV)

The origin of the absorption features

Proton cyclotron absorption line ?

In the case of proton scattering harmonics should be greatly suppressed.

Atomic line transitions ?

Hydrogen ? Mixture ?

van Kerkwijk & Kaplan 2006, astro-ph/0607320

In any case $B \approx 10^{13} - 10^{14} G$

X-ray pulsations

Period history: RX J0720.4–3125 and RBS 1223

2001

2000

1998

 $B = 3.4 \cdot 10^{13} G$

10

0

-10

-20

-30

-40

-50

φ–φ_{linear} (cycles)

1999

2002

2003

2004

2005

•**t**_0

CXO/ACIS CXO/HRC

XMM/PN

XMM/MOS

ROSAT/HRI

5.4

2006

Kaplan & van Kerkwijk 2005 ApJ 635, L65

P = 8.39 s $dP/dt = (0.698 \pm 0.002) \cdot 10^{-13} \text{ s s}^{-1}$ $\tau = P/2(dP/dt) = 1.9 \cdot 10^6 \text{ y}$ $B = 2.4 \cdot 10^{13} G$

> Kaplan & van Kerkwijk 2005 ApJ 628, L45

Magnetic fields

Unique opportunity to estimate B in two independent ways:

- Magnetic dipole braking → B = 3.2 x 10¹⁹ (P x dP/dt)^{1/2} Spin-down rate (P, dP/dt)
 Spin-down luminosity required to power the Hα nebula (dE/dt, τ)
- Proton cyclotron absorption \rightarrow B = 1.6 x 10¹¹ E(eV)/(1-2GM/c²R)^{1/2}

Object	Р	Semi	dP/dt	E _{abs}	B _{db}	B _{cvc}
	[S]	Ampl.	[10 ⁻¹³ ss ⁻¹]	[eV]	[10 ¹³ G]	$[10^{13} G]$
RX J0420.0-5022	3.45	13%	< 92	?	< 18	
RX J0720.4–3125	8.39	8-15%	0.698(2)	280	2.4	5.6
RX J0806.4-4123	11.37	6%	< 18	430/306 ^{a)}	< 14	8.6/6.1
1RXS J1308.8+2127	10.31	18%	1.120(3)	$300/230^{a}$	3.4	6.0/4.6
RX J1605.3+3249	6.88?			450/400 ^{b)}		9/8
RX J1856.5–3754	7.06	1.5%	< 19	_	4.2 ^{c)}	_
1RXS J2143.0+0654	9.43	4%	<60 ^{d)}	750	< 24 ^{d)}	15

a) Spectral fit with single line / two lines

- b) With single line / three lines at 400 eV, 600 eV and 800 eV
- c) Based on age of 5x10⁵ years

Estimate from Ha nebula assuming that it is powered by magnetic dipole breaking: ~1x10¹³ G

d) Radio detection: Malofeev et al. 2006, ATEL 798

Spectral variations with pulse phase

RX J0720.4-3125

RX J0420.0-5022 RX J0806.4-4123

Cropper et al. (2001)

Haberl et al. (2005)

Spectral variations with pulse phase: RBS 1223

Two-spot model: $kT_{\infty} = 92 \text{ eV}$ and 84 eV

 $2\Phi \sim 8^{\circ}$ and $\sim 10^{\circ}$

offset $\sim 20^{\circ}$

Long-term spectral changes from RX J0720.4-3125

Increase at short wavelength: temperature increase Decrease at long wavelength: deeper absorption line

Increase in pulsed fraction

Precession of the neutron star? *de Vries et al. (2004)*

RX J0720.4-3125 longterm spectral variations

RX J0720.4-3125: Spectral variations over 4.5 years

Rev.	kT(eV)	EW(eV)
•0078	86.6 ± 0.4	-5.02 ± 4.5
0175	86.5 ± 0.5	$+8.68 \pm 7.7$
•0533/534	88.3 ± 0.3	-21.5 ± 2.6
0711/711	91.3 ± 0.6	-73.7 ± 4.9
•0815	93.8 ± 0.4	-72.4 ± 4.7
•0986	93.5 ± 0.4	-68.3 ± 5.2
•1060	93.2 ± 0.4	-67.4 ± 4.3
•1086	92.6 ± 0.4	-67.5 ± 3.5
• DD de 1 db	:	

• FF mode + thin filter

common line energy: $280 \pm 6 \text{ eV}$ common line width: $\sigma = 90 \pm 5 \text{ eV}$

Long-term variations over 5.5 years:

Temperature by $\sim 7 \text{ eV}$

Absorption line equivalent width by ~70 eV

Radius of emission area from 4.4 km to 4.8 km (d=300pc)

But flux is constant within $\pm 2\%$

RX J0720.4-3125 longterm spectral variations

Free precession of an isolated neutron star with period 7–8 years $\epsilon = (I_3 - I_1) / I_1 = P_{spin} / P_{prec} \approx 4.10^{-8}$ (moments of inertia for a rigid body) between that reported from of radio pulsars and Her X-1

RX J0720.4-3125 pulse phase spectral variations

13-05-2000 (rev 0078) 06-11-2002 (rev 0533/534) 22-05-2004 (rev 0815) 0 28-04-2005 (rev 0986) 23-09-2005 (rev 1060) 12-11-2005 (rev 1086) EW (eV) 50 85 90 95 kT (eV)

RX J0720.4-3125: Spectral variations over pulse and precession phase

RX J0720.4-3125: A precessing isolated neutron star

See also: Perez-Azorin et al. (2006)

not exactly antipodal: phase shift of lag between hard and soft emission $\theta_0 = 160^\circ$

RX J0720.4-3125: A precessing isolated neutron star

Roberto Turolla Cor P. De Vries Silvia Zane Jacco Fink Mariano Mendez Frank Verbunt

Haberl et al. 2006 A&A 451, L17

Pulsars

high-energy detections (incomplete) AXPs / SGRs (magnetars) Magnificent Seven: circles: P/P diamonds: cyclotron lines

magnetic dipole braking: age = P / $2\dot{P}$, B = $3.2 \times 10^{19} (P\dot{P})^{1/2}$

The inhomogenous Interstellar Medium (B. Posselt)

Henbest & Couper 1994

Distance estimates from X-ray absorption

In the direction of RX J1856.5-3754 (1=359°, b = -17°)

Kaplan et al. 2002 : 140 ± 40 pc Kerkwijk & Kaplan 2006 : 147–179 pc

towards R CrA (a) 130 pc : 0.7 x 10²⁰ cm⁻² (a) 140 pc : 1.0 x 10²⁰ cm⁻²

	N(H) [10 ²⁰ cm ⁻²]	Distance [pc]
RX J1856.5-3754	0.7 (0L)	120-140
RX J0420.0-5022	1.6 (1L)	320-350
RX J0720.4-3125	1.2 (1L)	230-280
RX J0806.4-4123	1.0 (1L)	230-260
RBS 1223	4.3 (1L)	-
RX J1605.3+3249	2.0 (3L)	320-400
RBS 1774	2.4 (1L)	380-440

Posselt et al. 2006, London (astro-ph/0609275)

Nearby INS and local stellar structures

Blue lines are possible INS positions assuming d = 100 - 400 pc

OB member locations after de Zeeuw et al. 1999

All XDINSs are located in a half sky centred on Sco OB2

Isolated Neutron Stars: From the Interior to the Surface

Christian Motch & Adriana Mancini-Pires

26 April 2006

Where are the nearby Neutron Stars with 10¹² Gauss?

- Heating by field decay?
- Lower overall cooling rate?
- Hotter polar caps?

The Magnificent Seven: Summary

- F_x/F_{opt} > 10⁴ High proper motion dP/dt + absorption features Evidence for multiple lines
- \rightarrow Isolated neutron stars
- \rightarrow Nearby, cooling isolated neutron stars
- $dP/dt + absorption features \rightarrow Magnetic fields 10^{13-14} G$
- **Evidence for multiple lines** \rightarrow **Proton cyclotron absorption** + Atomic line transitions?

Interesting individuals:

RX J0720.4-3125: Pulsar, absorption feature \rightarrow B field, kT distribution Precession \rightarrow A probe to the NS interior RX J1856.4-3754: Weak pulsations, no absorption feature

State of the atmosphere (condensed)? Composition of the atmosphere? Origin of absorption features? Individual differences (viewing effects) ?

Theoretical work on NS atmospheres (strong B fields) Improved X-ray detectors (resolution + sensitivity) X-ray monitoring More optical observations (large telescopes)