

Espectrógrafo óptico de mediana y baja dispersión para el Observatorio de San Pedro Mártir

Fecha: 26/01/07 No. de páginas: 82 Código: **ESOPO-OP-A-DO1** Versión: 2

Título

Diseño Óptico

INSTITUTO DE ASTRONOMÍA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Control del documento

Preparado por	J. Jesús González Diseño y Responsable Óptico Científico del Proyecto	
	Francisco Cobos	
	Diseñador óptico	
Revisado por		
Aprobado por	Alejandro Farah Project Manager	
Autorizado por	Rafael Costero Investigador Principal	
	Juan Echevarria Responsable del Proyecto	

Registro de cambios (A)

Número	Fecha	Sección	Página	Descripción del cambio
1	Abril 2005			J. Jesús González escribe documento
2	Mayo 2005			Carlos Tejada proporciona ordenes de trabajo para sistema azul
3	Mayo-Junio 2005			F. Cobos revisa
4	Septiembre 2005			F. Cobos revisa y actualiza el documento
5	Marzo 2006			F. Cobos revisa y actualiza el documento
6	Enero 2007			F. Cobos revisa y actualiza el documento

Lista de abreviaciones

ESOPO	Espectrógrafo óptico de mediana y baja dispersión para el Observatorio de San Pedro Mártir
RAN	Requerimientos de Alto Nivel

- **OAN-SPM** Observatorio Astronómico Nacional en San Pedro Mártir
- IA-UNAM Instituto de Astronomía de la Universidad Nacional Autónoma de México

ÍNDICE

1.	OBJE	ΤΙνο	8
2.	INTRO	DDUCCIÓN	8
2.1	ANTE	CEDENTES	8
3.	RESU	MEN GENERAL DEL DISEÑO ÓPTICO	9
3.1	INTRO	DUCCIÓN	9
3.2	Р DATOS	GENERALES DEL DISEÑO ÓPTICO	11
3.3	CRITE	RIOS DE DISEÑO	17
	3.3.1	Telescopio Teórico	17
	3.3.2	Temperatura y presión de diseño:	17
	3.3.3	Campos a lo largo de la rendija	
	3.3.4	Distancia focal del colimador	
	3.3.5	Grado de colimación	
	3.3.6	Rejillas de difracción y cubrimientos espectrales	
	3.3.7	Distancia focal de las cámaras	19
	3.3.8	Ventanas de Criostatos	20
	3.3.9	Aberturas y Espesores	20
	3.3.10	Función de Mérito	20
	3.3.11	Presupuesto de Diseño, Construcción y Operación (resolución y m	iuestreo) 21
	3.3.12	Presupuesto de eficiencia de la óptica	22
	3.3.13	Presupuesto de Estabilidad Óptica	23
	3.3.14	Corrector de Dispersión Atmosférica	23
4.	DETA	LLE DE LENTES, SUPERFICIES Y MATERIALES ÓPTICOS	24
4.1	CARAC	CTERÍSTICAS DE LAS LENTES DE ESOPO	24
4.2	SUPER	RFICIES ÓPTICAS DE ESOPO	25
	4.2.1	Superficies comunes a los dos brazos de ESOPO	25
	4.2.2	Superficies Ópticas del Brazo Azul	26
	4.2.3	Superficies Ópticas del Brazo Rojo	27
4.3	TEJOS	(BLANKS) DE ESOPO	27
	4.3.1	Tejos para Lentes de ESOPO	28
	4.3.2	Tejos para Contras de Prueba	29
5.	DESE	MPEÑO Y VERIFICACIÓN DE REQUERIMIENTOS	30

5.1	CORRECTOR DE DISPERSIÓN ATMOSFÉRICA	.30
5.2	CALIDAD DE IMAGEN DEL DISEÑO ÓPTICO	.33
5.3	PRESUPUESTO DE MUESTREO A RESOLUCIÓN NOMINAL	.34
5.4	DISPERSIÓN Y RESOLUCIÓN ESPECTRALES DE DISEÑO	.35
5.5	DISPERSIÓN, RESOLUCIÓN Y CUBRIMIENTO ESPECTRAL NETO (REJILLAS DE USO).	.38
5.6	EFICIENCIA DEL SISTEMA	.39
5.7	DETECTORES	.41
5.8	EFICIENCIA ESPERADA DEL DETECTOR AZUL	.41
5.9	EFICIENCIA ESPERADA DEL DETECTOR ROJO	.44
5.10	FACTORES DE EFICIENCIA EN MONTURA CÓNICA DE REJILLAS DE DIFRACCIÓN	.44
6. ESOP	PROPIEDADES (ÓPTICAS Y MECÁNICAS) DE MATERIALES ÓPTICOS O	SEN 46
6.1	SYNTHETIC FUSED SILICA (SCHOTT LITHOTEC)	.47
6.2	CALCIUM FLUORIDE CAF2 (SCHOTT LITHOTEC)	.48
6.3	К10 (SCHOTT)	.49
6.4	N-PK52 (SCHOTT)	.50
6.5	S-FPL53 (OHARA)	.51
6.6	N-BAK2 (SCHOTT)	.52
6.7	N-BAK1 (SCHOTT)	.53
6.8	SBAL11 (OHARA)	.55
6.9	BSM51Y (OHARA)	.56
6.10	PBL26Y (OHARA)	.57
6.11	PBL6Y (OHARA)	.58
6.12	N-BK7 (SCHOTT)	.59
6.13	N-SSK5 (SCHOTT)	.60
6.14	N-LAK8 (SCHOTT)	.61
6.15	SF5 (SCHOTT)	.62
6.16	N-SF5 (SCHOTT)	.63
		.63
6.17	ACOPLANTE ÓPTICO OCK-433	.64
6.18	ACOPLANTE ÓPTICO OCK-451	.65
7.	ESPECIFICACIONES DE MANUFACTURA E INTEGRACIÓN	.67
7.1	ÓPTICOS (ORDENES DE TALLER)	.67

7.2	OPTO-MECÁNICOS	.67
7.3	GEOMÉTRICOS	.67
7.4	INTEGRACIÓN Y ENSAMBLE	.67
7.5	TÉRMICOS	.67
7.6	MANUFACTURA	.67
7.7	Repetitividad	.67
7.8	MANTENIMIENTO	.67
7.9	AMBIENTALES	.67
7.10	EMBALAJE, MANEJO, ALMACENAMIENTO Y TRANSPORTE	.67
7.11	VERIFICACIÓN	.67
8	ANEXO 1: REQUERIMIENTOS DE ALTO NIVEL (RAN)	.68
9	ANEXO 2 PLANOS DE FABRICACIÓN DE LENTES	.70
9.1 Co	DRRECTOR DE DISPERSIÓN ATMOSFÉRICA	.70
9.2 BF	RAZO AZUL	.70

1. OBJETIVO

El objetivo de este documento es:

- 1. Concentrar las especificaciones y requerimientos de la óptica para ESOPO.
- 2. Describir las diferentes configuraciones geométricas de la óptica y los diferentes materiales que la componen.
- 3. Dar el contexto y explicar cuales han sido las etapas del proceso hasta arribar al diseño actual, aclarando además en que etapa nos encontramos y cuales nos faltan por cubrir.

2. INTRODUCCIÓN

2.1 ANTECEDENTES

El Instituto de Astronomía de la UNAM (IA-UNAM) ha hecho espectroscopía astronómica durante décadas junto con su desarrollo instrumental, en especial para observaciones en el óptico y en el infrarrojo. En el óptico gran parte del trabajo se ha realizado, en el Observatorio Astronómico Nacional en San Pedro Mártir (OAN-SPM), con dos equipos: El espectrógrafo Boller & Chivens -en préstamo temporal del Observatorio de Brera- y el espectrógrafo Echelle de alta resolución espectral. En la medida de lo posible, se han modernizado los espectrógrafos existentes; sin embargo, el Boller & Chivens no tiene la eficiencia necesaria para muchos proyectos astronómicos y por otro lado, al no ser propiedad del observatorio, representa un riesgo para la capacidad espectroscópica de baja y mediana resolución en el OAN.

El IA-UNAM, a través de su Consejo Interno y después de un concurso con arbitrajes interno y externo, determinó proceder al diseño y construcción de un Espectrógrafo Óptico de Mediana Resolución para el telescopio de 2.10 m del Observatorio Astronómico Nacional en San Pedro Mártir, para sustituir al espectrógrafo Boller & Chivens. El proyecto fue otorgado al grupo responsable del instrumento al que actualmente se le denomina ESOPO. El concepto básico se basa en <u>dos</u> brazos, que conjuntamente cubren un intervalo espectral amplio, siguiendo la recomendación de uno de los árbitros externos de esa licitación. El otorgamiento no incluía presupuesto asignado al proyecto. El propósito básico del proyecto es: contar con un espectrógrafo propio que partiendo, como mínimo, de una equivalencia en cuanto a su utilidad al actualmente en uso (propiedad del Observatorio de Brera de la Universidad de Milán), sea más eficiente y moderno en su concepción y diseño y permita llevar a cabo una gran diversidad de observaciones astronómicas, incluidas las que requieran de amplia cobertura espectral en el intervalo óptico, con resolución espectral 500 < R < 5000.

La información que se obtiene de un espectrógrafo de esas características es necesaria para el estudio de objetos tanto estelares como extendidos, dentro de nuestra Galaxia o galaxias externas. En suma, se trata de un espectrógrafo de propósito general que substancialmente mejora la resolución y el cubrimiento espectrales, la cobertura de campo y la eficiencia óptica y la de operación, con respecto al espectrógrafo italiano con que actualmente se cuenta.

ESOPO ha sido considerado por el Instituto como un proyecto de alta prioridad, no solo por su utilidad astronómica, sino también como un proyecto piloto de gestión y metodología, en el que se están aplicando –en la medida de lo posible- procedimientos de operación y normatividad empleados en proyectos de competencia internacional. Esa metodología de trabajo, a nuestro juicio, si se aplica adecuadamente, garantiza que el instrumento sea de gran calidad y satisfaga las expectativas en cuanto a su desempeño. Esta forma de trabajo implica estructuras de organización y funcionamiento que incluyen aspectos como las figuras de investigador principal, de gerencia de proyectos, de ingeniería de sistemas, de control de calidad, responsables de paquetes de trabajo específicos, la creación de documentación mínima en cada etapa, así como las de asesoría y evaluación por parte del Comité Asesor Científico (CAC) y del Comité Técnico Especializado (CTE). Este proyecto ha sido financiado desde un principio por el CONACYT y por la UNAM: a través de DGAPA, CTIC, y el Instituto de Astronomía.

El presente trabajo es tan solo una parte en la documentación y organización de ESOPO y pretende describir los detalles del diseño óptico final del espectrógrafo, así como su evolución al ser fabricadas sus componentes ópticas, modificando ligeramente algunos valores de parámetros.

3. RESUMEN GENERAL DEL DISEÑO ÓPTICO

3.1 Introducción

El diseño óptico final de ESOPO ha seguido el siguiente proceso previo:

- 1. Definición de Objetivos Científicos y de Requerimientos de Alto Nivel: Se tenía una idea general de lo que se requería de un espectrógrafo que substituyera al Boller & Chivens de Brera, pero no existía un consenso claro y explícito de requerimientos para comenzar a diseñar el instrumento. El equipo de ESOPO buscó definir primero el tipo de problemas científicos que puedan atacarse con el instrumento y así conocer el uso y el alcance del espectrógrafo. Por ejemplo, aclarando si se quiere que sea de uso general ó bien un instrumento, con un alto grado de especialización, dedicado a un número relativamente limitado de tipo de observaciones; con base en la definición de los objetivos científicos a alcanzar y decidir respecto a los aspectos específicos para el diseño como: cubrimiento, resolución y muestreo espectrales, tamaño del campo, modos de operación, etc.
- Esta etapa inicial del proyecto fue un proceso iterativo, a través de una serie de consultas y discusiones con diversos usuarios del Observatorio Astronómico Nacional y con la formación del Comité Asesor Científico, que permitió definir las características del espectrógrafo, y éstas se resumen generando una lista de Requerimientos de Alto Nivel (RAN) para ESOPO.
- 3. Los RAN definen <u>explícita y cuantitativamente</u> aspectos como: el rango espectral; configuración del telescopio (F/7.9); la eficiencia del instrumento (sin telescopio y con detector), a diferentes longitudes de onda; resoluciones mínima y máxima; modos de operación; rejilla y ancho de rendija nominales; variaciones en la resolución aceptables a lo largo de la rendija; tamaño del campo (que tan larga es la rendija); anchos de rendija; escala sobre el detector; prioridades entre muestreo espectroscópico y espacial; definición de requerimientos ambientales

de diseño, operación y supervivencia; necesidad de definir un corrector de dispersión atmosférica; etc. Otros RAN se relacionan con características de linealidad y ruido de lectura del detector, y otros más con la operación del instrumento: cambios de configuración (número de rejillas intercambiables sin necesidad de abrir el instrumento durante la noche de observación) y definición de tiempo muerto máximo entre cambios de configuración; calibraciones del espectrógrafo al principio y final de la noche, y comportamiento ante flexiones, cambios de temperatura, etc.

- 4. De los puntos anteriores se desprende lo siguiente: Se hizo un esfuerzo intenso y consumidor de tiempo, en aras de definir con la mayor precisión posible, el uso astronómico del instrumento y las características que se le demandan. Se parte de la convicción de que es un esfuerzo que se verá compensado por la calidad del instrumento, junto con el minucioso cuidado en las otras etapas del proyecto: diseño, manufactura, ensamble, pruebas y un aprovechamiento de la etapa de integración y pruebas en el telescopio ("commisioning") que permitan validar astronómicamente el espectrógrafo finalmente construido.
- 5. Estos requerimientos primarios, ampliamente discutidos con el Comité Científico Asesor, y que van siendo revisados de manera iterativa conforme el diseño avanza, se muestran en el **Anexo 1.**
- 6. Los RAN se han traducido a las características técnicas a considerarse en los diseños óptico, mecánico, etc. El diseño óptico en particular primero, ya que dicta en gran medida las dimensiones y especificaciones generales del instrumento.

El presente diseño es el resultado de un proceso iterativo de: diseños y revisiones conceptuales y preliminares. En particular han servido para revisar el alcance y congruencia de los requerimientos de alto nivel. La metodología de trabajo en ESOPO es una de las que con mayor frecuencia se aplican en proyectos sujetos a la normatividad internacional.

3.2 Datos Generales del Diseño Óptico

Figura 1. Concepto para el cubrimiento espectral de ESOPO en dos brazos.

El diseño óptico de ESOPO tuvo como puntos de partida:

- El diseño óptico se hizo utilizando, principalmente, el paquete Zemax, y bases de datos complementarias, que contienen las características detalladas de los vidrios ópticos comerciales, principalmente de las fábricas Schott y Ohara (ver Sección 6).
- 2. Cubrimiento espectral: La Figura 1 muestra el concepto básico del cubrimiento ó intervalo espectral requerido en ESOPO, dividiendo el instrumento en dos brazos, mediante un dicroico, con un brazo azul optimizado para la octava de 350 a 700 nm y otro brazo rojo optimizado para cubrir la octava de 450 a 900 nm con un traslape significativo. Así, ESOPO consiste en dos espectrógrafos, uno optimizado en el azul y otro en el rojo, que pueden utilizarse por separado o combinados para cubrir simultáneamente todo el rango espectral a una resolución mayor que la de las octavas por separado.
- 3. La Figura 2 muestra el diagrama del diseño óptico final de ESOPO. A continuación se muestran los elementos ópticos principales así como sus parámetros más importantes:

Figura 2. Elementos del diseño óptico de ESOPO

• Corrector de dispersión atmosférica

- <u>No es propiamente parte del espectrógrafo o del proyecto ESOPO</u>. El equipo óptico realizó el diseño por ser ésta una parte fundamental para el óptimo aprovechamiento del espectrógrafo que cubre, con una sola rendija de entrada, el rango espectral de 3500 a 9000 Ángstroms.
- El diseño se hizo de tal manera que el corrector de dispersión sea utilizable para cualquier instrumento del 2.1 m. Es decir: <u>No</u> modifica significativamente el tamaño o escala de imagen del telescopio, o la curvatura y posición de la superficie focal del telescopio.
- Se optimizó para efectivamente corregir por dispersión hasta una distancia cenital de 60 grados para un campo de: al menos 10 minutos de arco.
- Localización: Su primera superficie justo debajo del guiador, 40 mm dentro de la platina, su última superficie óptica a una distancia de ~ 40 mm de la primera.
- Concepto: dos sistemas de prismas dobles de vidrio óptico Schott (K10 y N-PK52A), con ángulos de prisma: ~ 2.355º y ~ 2.540º, cruzados con contra-rotación variable con distancia cenital, y en función de los ángulos paraláctico y de orientación de la platina.
- Las superficies exteriores de ambos prismas tienen curvaturas diferentes para corregir sus propias aberraciones y no modificar las características focales del telescopio, de tal manera que presentes y futuros instrumentos no sean afectados y puedan ignorar en sus diseños las características ópticas del corrector.

Rendija

- 10´ de largo: 46.04 mm (76.74 μm/"). Para diseño: 8' de largo: 36.83 mm
- Abertura desde 0.2" (o menos, pero evitar que las cuchillas se toquen).
- Fuera de la abertura de entrada (rendija) el resto del mecanismo, en un campo no menor a 8 x 8 minutos, será reflejante con calidad óptica suficiente para permitir centrar y guiar el campo con una cámara auxiliar.
- La inclinación de la rendija reflejante está determinada por el diseño óptico y mecánico del subsistema de calibración y adquisición de campo.
- Tamaño de imagen que proporciona el telescopio -ideal- en el campo referido: 3.8 µm (0.05"). Para un presupuesto de errores y de operación amplio, el diseño óptico de ESOPO no degrada este límite de difracción significativamente.

Figura 3 Doblete de Campo en ESOPO

- Lente de campo (pre-colimador)
 - Doblete acromático (a 47.65 mm de la rendija) compartido por ambos brazos.
 - Ayuda a homogenizar los campos divergentes que llegan al colimador

Colimador

- Refractor para maximizar grado de colimación por aberraciones de espejos fuera de eje.
- Distancia focal para un haz colimado de 100 mm. Este diámetro de pupila es lo suficientemente grande para alcanzar, con una rendija de 0.9", resoluciones reales de R = 5000 con rejillas de densidad no mayor a 1800 ll/mm.
- Triplete refractor (uno por brazo) a 891.45 mm <azul> y a 895.35 mm <rojo>, de la rendija
- Diámetro: 120 mm en ambos brazos
- Distancia focal (haz colimado de ~100 mm de diámetro): f = 791.514 mm (azul), 791.505 mm (rojo)
- Colimación RMS: mejor que: 0´.030 (azul) y 0´.039 (rojo). Como referencia el telescopio teórico con un colimador paraxial da en sí una colimación de 0´.02.

Figura 4 Los colimadores de ESOPO son tripletes refractores

- Dicroico y espejo doblador (entre lente de campo y colimador)
 - Posición nominal 306.725 mm y 418.15 mm de la rendija. Esta posición no tiene implicaciones ópticas por lo que fue elegida por el diseño mecánico para un centro de gravedad y un posicionamiento de subsistemas adecuados.
 - Ángulo de inclinación: El brazo azul es reflejado por el espejo dicroico a un ángulo de 61.20 grados respecto al eje óptico del telescopio. El haz rojo es reflejado por el segundo espejo un ángulo total de 45 grados en la dirección opuesta al brazo azul (ver Figura 5)
 - El diseño contempla una montura de rejilla (mas adelante) bajo un ángulo entre cámara y colimador de 45 grados (ángulo del espectrógrafo), y las posiciones (alturas) y los ángulos de inclinación de los espejos (30.60 y 22.5 grados respectivamente) se optimizaron de tal manera que las rejillas de ambos brazos estén a la misma altura (cerca de la platina) y

que, por el otro lado, las botellas criogénicas también estén a una altura similar y alineadas cerca de la vertical (cuando el telescopio apunta al Cenit)

Figura 5 ESOPO: Rendija, doblete común a los dos brazos, dicroico y espejo

• Rejillas de Reflexión

- A 1215.45 mm <azul> y 1433.30 mm <rojo> de la rendija (221.525 mm <del colimador azul> y 210.225 mm del colimador <rojo>)
- Montura cónica (22°.5).
- Las eficiencias en ambas polarizaciones mantienen la misma forma y amplitud que en la configuración plana en Littrow, y -al igual que la longitud de onda de blaze- se desplazan hacia el azul por un factor de 12.7% (f = cos (22.5)) sin amplificación anamórfica alguna.
- Abertura clara: 104x114 mm (L x λ)
- Rallada y/o holográfica con blaze
- Cámaras (Figura 2)
 - Escala 0.45"/pix: f = 309.40 mm <azul> y 343.90 mm <rojo> (F/3.09 y F/3.44)
 - 1^ª superficie a 150 mm de la rejilla en ambos brazos
 - 2 dobletes y 3 singletes (esféricas). Diámetro máximo: 172 mm <azul> y 163 mm <rojo>
 - Diámetro mínimo: 76 mm (ventana del criostato)
 - Amplio espacio para obturador y compensación térmica pasiva
 - Ventana de criostato idéntica en ambos brazos, con superficie plana hacia el detector.

Figura 6 Cámaras azul y Roja de ESOPO

- Detectores e2v (Marconi) back-illuminated, NIMO
 - A 9.2 mm de la ventana del criostato
 - Blue (Azul): "2048 x 4608 13.5µm pixels (27.642 x 62.208 mm), thinned, broad-band astro
 - Red (Rojo): 2048 x 4096 15 µm pixels (30.720 x 61.440 mm), deepdepletion, low-fringing, Mid-band astro
- Presupuesto de degradación para construcción y operación
 - El sistema se diseñó para proyectar la rendija de 0.9" en 1.78 píxeles a lo largo de la dispersión (para ambos brazos).
 - Para un muestreo de 2.1 píxeles por elemento de resolución (cuando se está limitado por rendija) las imágenes finales de ESOPO deben ser por tanto del orden del 1.062 píxeles.
 - El diseño (antes de construcción, pero considerando los datos reales <de fundido> de los vidrios usados en el brazo azul y peticiones expresas del grupo de optomecánica, respecto a distancias entre orillas de lentes) da: Imágenes promedio (FWHM a lo largo de la dispersión) de <u>3.37 µm con</u> <u>máxima de 7.54 µm</u> para el brazo azul (y de <u>3.50 µm con máxima de 7.85</u> <u>µm</u> para el brazo rojo, previo a la introducción de los datos reales de fundición de los vidrios de su cámara).
 - El presupuesto de degradación óptica, mecánica y térmica (por construcción y operación) a 1.12 píxeles es por tanto amplio -y con mayor razón para el brazo rojo al ser los píxeles de 15 en lugar de 13.5 µm- (ver documento relativo al presupuesto de errores).

Los resultados más relevantes ya considerados en el diseño óptico final (antes del cálculo de presupuesto de errores y de la construcción de ningún elemento óptico) son:

- Cumplimiento, con margen de seguridad, de todos los requerimientos de alto nivel.
- Eficiencia entre 3 y 20 veces mayor a la del espectrógrafo actual, además de cubrir todo el rango espectral en una sola exposición al doble de resolución.
- Operación estable sin ajustes finos, sin necesidad de enfocar cámara o colimador
- Distorsión: < 0.73% (azul) y < 0.60% (rojo)
- Imagen instrumental (FWHM) en 8' (todas dispersiones):
 - Azul: 3.64μm (1.56 μm RMS) mn-mx: 0.92-7.78 μm (ver Figura 3)
 - Rojo: 3.43μm (1.25 μm RMS) mn-mx: 1.31-7.76 μm
- Amplio margen de construcción/operación: degradación hasta 15 µm
- Muestreo final: 2.1 pix/FWHM (rendija 0.9") Imagen instrumental final: 1.062 píxeles (14.33 μm y 15.93 μm)
- Contingencia de intercambio de detectores entre ambos brazos
- Acoplamiento de multipletes con gels curables (espesor ~80 μm)

Y a considerar a futuro:

- Recubrimiento antireflejante (16 interfaces aire/vidrio) ~ 0.8%.
- Compensación térmica pasiva.

3.3 Criterios de Diseño

3.3.1 <u>Telescopio Teórico</u>

- Se tomaron los valores nominales del telescopio de 2.1 m con el secundario nominal f/7.5, que se detallan en la sección 6.
- No se consideró ninguna caracterización de las aberraciones extras del telescopio real.
- Se consideró el sistema diafragmado a 2000 mm, como abertura máxima del espejo primario (por lo que la configuración real pasa de f/7.5 a f/7.905).
- Se permitió un ligero enfoque basado en una optimización de la curvatura de la superficie focal del telescopio para un campo de 10 minutos, lo cual no afecta al diseño.

3.3.2 <u>Temperatura y presión de diseño:</u>

Se tomaron los valores nocturnos medios anuales en el 2.1 m de SPM:
 3.0 ℃ y 0.7935 ATM

3.3.3 Campos a lo largo de la rendija

- Campos: 0, +/- 2.0', +/- 2.828', +/-4.0, +/-5.0'
- Pesos relativos: 2.5 para el campo central ; 1.0 para el resto de los campos

3.3.4 Distancia focal del colimador

Distancia focal neta del colimador (incluida la lente de campo) tal que la pupila a lo largo de la dispersión (ancho de rendija) sea lo más cercano a 100 mm para ambos brazos en las longitudes de onda 525 nm y 675 nm respectivamente.

3.3.5 Grado de colimación

La resolución máxima que puede alcanzar un espectrógrafo está determinada por los dos factores teóricos clásicos: a) mínimo ancho de rendija y b) máximo número de líneas que ilumine el haz colimado así como por c) el tamaño de la resolución instrumental. Esta última la gobiernan, por un lado la calidad de la misma rejilla de difracción, y por el otro la degradación óptica y mecánica del instrumento.

La degradación óptica (sin considerar la calidad de la rejilla de difracción) está determinada por dos factores independientes:

- 1. La calidad de imagen que produce el conjunto de lentes y elementos ópticos del sistema completo.
- 2. El grado de colimación: o la medida en la que los distintos rayos provenientes de un mismo campo iluminan de forma paralela a la rejilla de difracción.

El diseño óptico estableció una medida del grado de colimación basada en la desviación angular relativa de 6 rayos marginales emergentes del colimador. Se utilizó como criterio de diseño la minimización de la medida RMS (considerando todas las longitudes de onda y campos a lo largo de la rendija) de esta desviación angular.

Esta medida de colimación se discutió en detalle en el documento de diseño conceptual de ESOPO, así como el grado en que distintos colimadores (reflector cónico fuera de eje, refractor, etc.) pierden colimación respecto a un colimador cónico en eje de referencia.

Criterios de optimización del grado de colimación adoptados:

- Rayos marginales considerados: (0,+/-0.8),(+/-0.8,0),(0.5,0.5) y (-0.5,-0.5)
- Campos a lo largo de la rendija considerados: son los mencionados previamente en la sección **3.3.3**
- Longitudes de onda consideradas: Todas las incluidas, más adelante, en la Tabla 1 de sección 3.3.6
- Referencia: la medida de colimación de un colimador parabólico reflector en eje (telescopio de 2.1 m f/7.5 <f/7.905 diafragmado> y pupila de 100 mm) es de 0.022 minutos de arco (RMS)

- Criterios de optimización de grado de colimación de ESOPO:
 - o < 0.030' RMS (brazo azul)</pre>
 - < 0.039' RMS (brazo rojo)

3.3.6 <u>Rejillas de difracción y cubrimientos espectrales</u>

El diseño no se optimizó en modo imagen policromáticamente, sino directamente en modo espectroscópico considerando un conjunto de rejillas de difracción que cubrieran las resoluciones y cubrimientos espectrales (mínimos y máximos) esperados en ESOPO. En particular, las configuraciones Zemax de los brazos azul y rojo, consideraron las rejillas y longitudes de onda resumidos en la siguiente tabla.

Grating [II/mm]	Angle	Optimization Wavelengths Relative Cov 95%-coverage [A] Weights M		Covering Mode
500	8.17°	3500, 3998, 4365, 5250 , 6135, 6502, 7000	1	Blue octave
651	9.88°	3500, 3913, 4193, 4870 , 5547, 5827, 6208	2	Blue Arm
1000	13.71°	3500, 3758, 3940, 4380 , 4810, 4985, 5235	1	υν- Ηβ
725	7.18°	4598, 4964, 5212, 5810 , 6408,6656, 6992	1	Hβ – Hα (blue)
316	6.63°	4220, 5050, 5900, 6750 , 7600, 8450, 9230	1	Red Octave
400	8.78°	5080, 5750, 6400, 7050 , 7700, 8350, 9000	2	Red Arm
725	13.18°	4730, 5102, 5456, 5810 , 6156, 6502, 6865	1	Hβ – Hα (red)
Relative W	/eights	1.0, 1,0, 1.0, 2.5 , 1.0, 1.0, 1.0		

Tabla 1 Rejillas y Longitudes de Onda de Diseño (optimización)

3.3.7 Distancia focal de las cámaras

• Distancia focal de la cámara: tal que en la longitud principal de cada octava (ver tabla 1), la rendija de 0.9" se proyecte en 1.78 píxeles a lo largo de la dispersión (para ambos brazos).

- Dado que la montura cónica de las rejillas no produce amplificación anamórfica, significativamente distinta a la unidad, la distancia focal de las cámaras es por tanto tal que: la escala de placa sobre el detector es de 0.45"/píxel tanto a lo largo de la rendija como de la dispersión independientemente de la rejilla (resolución y cubrimiento espectral) que se utilice.
- Detector Brazo Azul: 2048 x 4608 píxeles de **13.5** micras de lado
- Detector Brazo Rojo: 2048 x 4096 píxeles de **15.0** micras de lado

3.3.8 Ventanas de Criostatos

- El diseño forzó a las ventanas de ambos brazos a ser iguales, para facilitar el manejo de detectores en caso de intercambio o de descompostura de alguno de los detectores o controladores.
- Se intentó, sin éxito, que ambas caras de las ventanas fueran planas. A fin de cuentas se logró que la superficie cercana al detector sea plana, y la otra superficie se la optimizó al mayor radio de curvatura permitido sin degradación de imagen.

3.3.9 Aberturas y Espesores

- Las aberturas se optimizaron a un mínimo de 5 mm extras en diámetro a la abertura clara necesaria. Este número es un acuerdo con el equipo optomecánico que consideró el margen necesario para montura. En varios casos este margen se excede con holgura, pero en general se trató de minimizar el volumen de las lentes, sin sacrificar calidad de imagen. Valores finales se detallan en la Tabla 5 y subsecuentes.
- Espesor en la orilla. Aún cuando el mínimo de 5.0 mm se estableció, en un acuerdo con el grupo opto-mecánico, como el grosor límite de las lentes en la orilla, se procuró que el espesor en la orilla fuera mayor que 7 mm. En la mayoría de las lentes se cumple con exceso.
- Espesor en el centro. En todas las lentes de las cámaras, especialmente las primeras de ellas con vidrios de alto costo, el espesor máximo en el centro se limitó por debajo de los 50 mm, que no es un factor altamente limitante a la eficiencia del sistema. El espesor mínimo central se estableció en 7 mm para una lente de 80 mm de diámetro.

3.3.10 Función de Mérito

- Optimización espectroscópica con todas las rejillas de diseño a la vez
- Minimización de tamaño de imagen monocromático independiente a lo largo de la dispersión y a lo largo de la rendija. <u>El objetivo es mantener el criterio de resolución espectroscópica por encima del muestreo espacial.</u> Función de

optimización en Zemax: Spot X+Y (peso 2 a 1), respecto al centroide, ignorando el color lateral ya que se optimizó con rejillas de difracción.

- La función de mérito Zemax también incluyó lo necesario para los criterios de tamaño de pupila, grado de colimación, escala de placa en el detector, espesores en centro y orilla, etc., discutidos anteriormente.
- Después de la optimización, el desempeño es evaluado en términos de los tamaños de imagen (FWHM) proyectados a lo largo de la dispersión y a lo largo de la dirección espacial. Estos son medidos, junto con la dispersión, resolución y grado de colimación en cada campo y longitud de onda para todas y cada una de las rejillas de optimización. La estadística de estas mediciones determina la función de mérito efectivamente utilizada.
- La optimización de la lente de campo considera siempre a las configuraciones de ambos brazos. Para los colimadores y cámaras, los brazos pudieron ser optimizados de manera independiente manteniendo fijas los elementos comunes (lente de campo y corrector de dispersión atmosférica). Las ventanas de los Criostatos son idénticas, excepto en el recubrimiento AR, diferente para las lentes de cada brazo.

3.3.11 Presupuesto de Diseño, Construcción y Operación (resolución y muestreo)

La rendija nominal de 0.9" se proyecta en 1.78 píxeles, el presupuesto de diseño, construcción y operación es la diferencia, en cuadratura, que lleva a esta rendija a ser muestreada en 2.2 píxeles:

$$FWHM_{Instr}[pixels] = \sqrt{2.1^2 - 1.778^2} \approx 1.3 pixels$$

De este presupuesto, el diseño óptico busca imágenes máximas menores ó iguales a 0.7 píxeles, y mucho menores RMS, por lo que el presupuesto de degradaciones instrumentales y de operación se desglosa como:

Factor de Resolución	FWHM [píxeles]
Rendija nominal de 0.9" proyectada en detector	1.778
Diseño óptico (resolución instrumental idealizada)	0.40
Construcción óptica más factores termo-ópticos no compensados	0.72
Mecánica y Operación	1.00
Total (Rendija Nominal + Instrumento)	2.20
Resolución Instrumental neta	1.29

Tabla 2 Presupuesto de degradación por Resolución Instrumental Nominal

Por otro lado, el requerimiento de alto nivel que la resolución (rendija más instrumento) no debe variar más de un 10 % (con una meta de 5%) a lo largo de la rendija, implica requerimientos a la variación de escala y calidad de imagen del sistema construido y en operación que se han repartido de acuerdo al presupuesto de la Tabla 3.

Tabla 3 Presupuesto de variación relativa de resolución instrumental a lo largo de la rendija

Variación relativa (en el campo) en resolución	DR/R [%]
Variación de proyección de rendija (distorsión y cromatismo)	1.2
Variación por efectos termo-ópticos no compensados	1.0
Variación por construcción óptica (homogeneidad)	1.0
Mecánica y Operación	3.2
Variación debida a rejilla de difracción	3.2
Variación Instrumental Neta	10

El diseño óptico ha buscado reducir lo más posible su presupuesto de variación a lo largo de la rendija para facilitar al máximo los factores más limitantes, tales como las mismas rejillas de difracción y el paralelismo y homogeneidad de las cuchillas de la rendija.

3.3.12 Presupuesto de eficiencia de la óptica

De acuerdo a los requerimientos de alto nivel, el reparto de eficiencias se puede dividir en dos etapas, la primera considerando únicamente la óptica sin rejilla y detector y una segunda considerando todo el sistema. Así, para el diseño óptico, se consideró el presupuesto de eficiencias de la primera etapa repartido de acuerdo a la XXXX.

Requerimiento:		
Transmisión de lentes		
Películas antireflejantes		
Espejo dicroico		
Espejo doblador		

Tabla 4. Reparto de eficiencias de la óptica de ESOPO

3.3.13 Presupuesto de Estabilidad Óptica

3.3.14 Corrector de Dispersión Atmosférica

- Campo de corrección: no menor a 10' de diámetro
- Longitudes de onda de corrección: a partir de 350 nm
- Corrección efectiva a una distancia cenital no menor a 60°
- Espesores mínimos en centro u orillas de cada lente: 5 mm
- Localización respecto al telescopio: por debajo de los límites del guiador y prácticamente dentro de la platina para no interferir con instrumentos y dar espacio para su opto-mecánica y control (ver figura 7).

Figura 7 Localización adoptada para el corrector de dispersión atmosférica para ESOPO y otros instrumentos presentes y futuros del 2.1 metros.

4. DETALLE DE LENTES, SUPERFICIES Y MATERIALES ÓPTICOS

4.1 Características de las Lentes de ESOPO

La Tabla 5 Datos de las lentes de ESOPO resume las características relevantes de cada una de las lentes en ESOPO, incluidos ambos brazos y el corrector de dispersión atmosférica. En una siguiente sección se detalla el diseño óptico, superficie por superficie, incluyendo el telescopio teórico utilizado en la optimización.

System	Lens	Glass	Diameter (mm)	mm	mm	Volume (mm ³	Weight (gm)	Notes
				Center	Edge			
	Prism 1A	K10		8.6	5.06 8.79	55.03	138.68	
Atmospheric Dispersion	Prism 1B	N-PK52	95	8.9	5.00 8.73	55.89	206.12	
Corrector (ADC)	Prism 2A	K10	33	8.9	9.02 13.05	70.67	260.63	
	Prism 2B	N-PK52		8.6	8.45 12.47	67.57	170.27	
					10 - 0	10.01		
Field-Lens	FL1	SILICA	70	7.8	13.50	43.81	96.38	
Doublet	FL2	CAF2		15.5	6.19	42.16	134.07	
	BTI 1	SILICA		123	17.06	165.96	365 12	
Blue Collimator	BTL2	S-EPI 53	120	26.4	12 77	221.87	803.12	
Triplet	BTL2	N-BAK2	120	9.9	13.38	131 41	375.83	
	DIEO	IN DAILE		0.0	10.00	101.41	070.00	
	BD1L1	N-BAK1	147	13.0	36.26	411.42	1312.42	
	BD1L2	S-FPL53	155	40.4	10.76	491.98	1780.96	
	BD2L1	S-FPL53	162	40.4	8.26	505.75	1830.83	
Blue	BD2L2	BSM51Y	163	13	22.89	372.12	1250.33	
Camera	BS1	PBL26Y	172	28.0	23.60	635.19	1969.08	
	BS2	PBL26Y	132	30.0	17.40	325.13	1007.89	
	BS3	PBL6Y	80	7.0	11.33	46.05	128.47	
	BW	SILICA	76	11.6	15.96	62.47	137.44	
Red	RTL1	S-BAL11		12.9	16.63	166.90	504.03	
Collimator	RTL2	S-FPL53	120	26.4	14.83	233.33	844.67	
Inplet	RTL3	S-BAL11		11.8	13.56	143.30	432.77	
	RD1L1	N-SSK5	147	11.0	24.75	301.16	1117.30	
	RD1L2	S-FLP53	150	27.0	10.11	330.44	1196.21	
	RD2L1	S-FPL53	154	42.0	11.29	500.42	1811.53	
Red	RD2L2	N-LAK8	152	17.0	31.09	467.86	1754.02	
Camera	RS1	SF5	163	17.6	11.94	319.88	1301.89	
	RS2	N-SSK5	145	26.1	14.27	329.77	1223.46	
	RS3	SF5	79	7.0	9.87	41.34	168.24	
	RW	SILICA	76	11.6	15.96	62.47	137.44	

Tabla 5 Datos de las lentes de l

Las tolerancias de fabricación se resumen posteriormente en las órdenes de trabajo de taller óptico en el ANEXO 2 Planos de Fabricación de Lentes.

4.2 Superficies Ópticas de ESOPO

En la siguientes tres secciones se describe el diseño óptico superficie por superficie, incluidas las separaciones entre elementos (vidrio, aire o vació). Se comienza con el telescopio teórico junto con los elementos compartidos por ambos brazos (Tabla) y, posteriormente, los particulares del brazo azul (Tabla) y rojo (Tabla).

4.2.1 <u>Superficies comunes a los dos brazos de ESOPO</u>

System	Surface	R _{curv}	Thickness	Glass	Dian	neter	Х	Z	Notes
					Phys	Clear			
Talaaaana	Primary	-9638.00	-3452.20	MIRROR	2108	2000	0	-1037.00	c=-1.07731
relescope	F/7.5 M2	-3930.00	4219.2	MIRROR	673	673	0	-4489.20	c=-4.32810
Mounting plate		Plane	-40.00		89.55	89.55	0	-270.000	
ADC	P1A-S1	+673.5	8.60	K10		83	0	-310.000	
Prism 1A	P1A-S2	Plane	0.08	OCK-433			0	-301.400	Couplant
ADC	P1B-S1	2.355º	8.90	N-PK52A	95		0	-301.320	-
Prism 1B	P1B-S2	-555.20	5.00			82	0	-292.420	
ADC Prism 2A	P2A-S1	-529.40	8.90	N-PK52A		80	0	-287.420	
	P2A-S2	Plane	0.08	OCK-433			0	-278.520	Couplant
ADC	P2B-S1	2.540º	8.60	K10			0	-278.440	-
Prism 2B	P2B-S2	+607.50	269.84			79	0	-269.840	
Slit		Plane	47.65		47	46.05	0	0	Rc=-2095
	FL1-S1	-81.75	7.80	SILICA		52.2	0	+47.650	
Field Lens	FL1-S2	Plane	0.08	OCK-433	70		0	+55.450	Couplant
Doublet	FL2-S1	Plane	15.50	CAF2	70		0	+55.530	
	FL2-S2	-70.45	235.695			58.8	0	+71.030	
DICHROIC		Plane	-584.995	MIRROR	101.6	85.8	0		

Tabla 6 Superficies Ópticas Comunes a los dos brazos de ESOPO (a 3ºC) **

** Todos los datos en milímetros

4.2.2 Superficies Ópticas del Brazo Azul

		_			1			_	
System	Surface	R _{curv}	Thickness	Glass	Diam	eter	Х	Z	Notes
					Phys	Clear			
DICHROIC		Plane	-584.9982	MIRROR	101.6	85.8	0	+306.725	
Blue	BTL1-S1	-3526.8900	-12.2999	SILICA		107	-512.644	+24.905	
	BTL1-S2	-343.9971	-0.08	OCK-433			-523.423	+18.980	Couplant
	BTL2-S1	-343.9152	-26.3935	S-FPL53*	120		-523.493	+18.941	
Triplet	BTL2-S2	+219.4459	-0.08	OCK-433	120		-546.622	+6.227	Couplant
·	BTL3-S1***	+219.4702	-9.8987	N-BAK2*			-546.692	+6.188	
	BTL3-S2***	+371.3795	-221.5248			109	-555.366	+1.419	
Grating		Plane	150.00	MIRROR	125 110-λ	115 104	-749.491	-105.299	
	BD1L1-S1	Plane	12.9983	N-BAK1*	147	137	-707.641	+38.745	
Blue Camera Doublet 1	BD1L1-S2	+127.7435	0.08	OCK-451	147		-704.014	+51.227	Couplant
	BD1L2-S1	+127.7485	40.3900	S-FPL53*	155		-703.992	+51.304	
	BD1L2-S2	-874.6844	3.00		155	145	-692.723	+90.090	
	BD2L1-S1	+218.0862	40.3900	S-FPL53*	162	151	-691.886	+92.971	
Blue Camera	BD2L1-S2	-206.7390	0.08	OCK-451	102		-680.617	+131.757	Couplant
Doublet 2	BD2L2-S1	-206.7379	12.9986	BSM51Y*			-680.595	+131.834	
	BD2L2-S2	-487.9477	18.50		163	152	-676.698	+144.316	
Blue Camera	BS1-S1	-165.8549	27.9958	PBL26Y*	172	151	-671.806	+162.082	
Singlet 1	BS1-S2	-160.6057	218.82		172	159	-663.996	+188.967	
Blue Camera	BS2-S1	+191.3410	29.99546	PBL26Y*	122	121	-602.945	+399.096	
Singlet 2	BS2-S2	-2547.3050	79.28		132	115	-594.576	+427.901	
Blue Camera	BS3-S1	-297.5580	7.00	PBL6Y*	80	69	-572.457	+504.033	
Singlet 3	BS3-S2	+493.0304	16.97		80	67	-570.504	+510.755	
Blue Dewar	BW-S1	-167.6786	11.599	SILICA	76	65	-565.769	+527.051	
Window	BW-S2	Plane	9.20	VACUUM	/0	64	-562.532	+538.190	
Blue CCD	CCD	Plane		VACUUM	27.648		-559.966	+547.025	Detector

Tabla 7 Datos de Superficies Ópticas del Brazo Azul (a 3ºC) **

* Los datos de índices de refracción dados por el fabricante se usaron en la optimización.

** Todos los datos en milímetros

*** Diámetro del sustrato = 120.3 mm <podría ser el final de la lente>

4.2.3 Superficies Ópticas del Brazo Rojo

System	Surface	R _{curv}	Thickness	Glass	Diam	neter	Х	Z	Notes
					Phys	Clear			
DICHROIC		Plane	138.15		101.6	85.8	-254.679	+418.150	
Fold Mirror		Plane	-615.5239	Mirror	101.6		-97.689	+515.837	
	RTL1-S1	-1022.6750	-12.89855	S-BAL11*		107	+337.550	+80.593	
Red	RTL1-S2	-330.4329	-0.08	OCK-433			+346.670	+71.473	Couplant
	RTL2-S1	-330.3886	-26.39349	S-FPL53*	100		+346.727	+71.416	
Triplet	RTL2-S2	+299.7361	-0.08	OCK-433	120		+365.390	+52.753	Couplant
	RTL3-S1	+299.7764	-11.79868	S-BAL11*			+365.446	+52.697	
	RTL3-S2	+419.9029	-210.2254			108	+373.789	+44.354	
Red Grating		Plane	150.00	Mirror	125 110	115 104	+522.440	-104.299	
	RD1L1-S1	+1184.9539	10.9987	N-SSK5	1/7	135		+45.701	
Red Camera Doublet 1	RD1L1-S2	+174.9946	0.08	OCK-451	147			+56.701	Couplant
	RD1L2-S1	+174.9946	26.9963	S-FPL53	150			+56.781	
	RD1L2-S2	Plane	3.00		150	138		+83.781	
	RD2L1-S1	+239.1683	41.9897	S-FPL53	154	142		+86.781	
Red Camera	RD2L1-S2	-173.0158	0.08	OCK-451	134			+128.781	Couplant
Doublet 2	RD2L2-S1	-173.0158	16.9984	N-LAK8*			500 444	+128.861	
	RD2L2-S2	-635.7833	30.50		152	146	+522.441	+145.861	
Red Camera	RS1-S1	-265.5145	16.5977	SF5	162	147	То	+176.361	
Singlet 1	RS1-S2	-203.7016	235.60		103	151	+522.445	+193.961	
Red Camera	RS2-S1	+210.0324	26.0970	N-SSK5	145	133		+429.561	
Singlet 2	RS2-S2	+2969.9143	136.12		143	128		+455.661	
Red Camera	RS3-S1	-310.1512	6.9980	SF5	00	68		+588.837	
Singlet 3	RS3-S2	+2459.9602	16.39		00	67		+595.837	
Red Dewar	RW-S1	-167.6786	11.5999	SILICA	76	64		+612.227	
Window	RW-S2	Plane	9.20	VACUUM	70	63		+623.827	
Red CCD	CCD	Plane		VACUUM	30.72 61.44			+633.027	Detector

Tabla 8 Datos de Superficies Ópticas del Brazo Rojo (a 3ºC) **

* Los datos de índices de refracción dados por el fabricante se usaron en la optimización.

** Todos los datos en milímetros

4.3 Tejos (blanks) de ESOPO

Se resumen las características de los tejos necesarios para generar las lentes de ESOPO descritas anteriormente. Para el cálculo de las dimensiones físicas de los tejos se consideran las curvaturas, diámetros y espesores de la lente generada con un margen de seguridad de 2 mm en diámetro y 4 mm en espesor. Las características

ópticas (homogeneidad, variación en el índice de refracción y dispersión óptica, etc.) se determinaron a partir de las tolerancias generadas en el presupuesto de errores.

4.3.1 Tejos para Lentes de ESOPO

System	Lens	Glass		Diam	Thick	Volume	Quality	Cost	Status
Atmospheric	Prism 1A	K10		97.00	12.00	96.07			Ν
Dispersion	Prism 1B	N-PK52	SCHOTT	97.00	13.00	96.07			Ν
Corrector	Prism 2A	N-PK52	300011	97.00	15.00	110.85	пз		Ν
(ADC)	Prism 2B	K10		97.00	14.00	103.46			Ν
Field-Lens	FL1	SILICA	CULOTT	62	18	54.34	H2		РМС
Doublet	FL2	CAF2	300011	72	20	81.43	UV-VIS		РМС
Blue	BTL1	SILICA	SCHOTT	122	22	257.18	H3		РМС
Collimator	BTL2	S-FPL53	OHARA	122	30	350.70	A2		РМС
Triplet	BTL3	N-BAK2	SCHOTT	122.3	22	258.44	H3		РМС
	BD1L1	N-BAK1	SCHOTT	149	40	697.47	H3		РМС
	BD1L2	S-FPL53	OHARA	157	44	851.81	A2		РМС
	BD2L1	S-FPL53	OHARA	164	44	929.46	A2		РМС
Blue	BD2L2	BSM51Y	OHARA	165	34	727.00	A2		РМС
Camera	BS1	PBL26Y	OHARA	162	53	1092.44	A2		РМС
	BS2	PBL26Y	OHARA	134	34	479.49	A2		РМС
	BS3	PBL6Y	OHARA	82	15	79.22	A2		РМС
	BW	SILICA	SCHOTT	78	20	95.57	H3		РМС
Red	RTL1	S-BAL11		122*	22	257.18			ΡM
Collimator	RTL2	S-FPL53	OHARA	122	30	350.70	A2		ΡM
Triplet	RTL3	S-BAL11		122*	22	257.18			ΡM
	RD1L1	N-SSK5	SCHOTT	149	31	540.54	H3		Q
	RD1L2	S-FLP53	OHARA	149	31	540.54	A2		Q
	RD2L1	S-FPL53	OHARA	156	46	879.22	A2		Q
Red	RD2L2	N-LAK8	SCHOTT	159*	40	794.23	H3		ΡM
Camera	RS1	SF5	SCHOTT	161	34	692.18	H3		Q
	RS2	N-SSK5	SCHOTT	144	31	504.87	H3		Q
	RS3	SF5	SCHOTT	81	14	72.14	H3		Q
	RW	SILICA	SCHOTT	78	20	95.57	H3		ΡM

Tabla 4 Características mínimas requeridas de los tejos (blanks) para lentes de ESOPO (a 20ºC) **

C – Lens in construction ; N- Not specified yet ; Q – Quoted but not yet purchased

** Todos los datos en milímetros

4.3.2 Tejos para Contras de Prueba

Las lentes de ESOPO se fabricarán en los talleres ópticos del IA-UNAM y del INAOE, el diseño óptico no considera ningún "test-plate fitting" ya que estos talleres no poseen un catálogo de contras de pruebas adecuado para ESOPO. Ambos talleres tienen interferómetros para probar las superficies cóncavas, y no todas las superficies convexas requieren contra de prueba. La tabla siguiente resume las características de los tejos para las contras de prueba necesarias en ESOPO. Para el calculo del los tejos de contra de pruebas se siguió el mismo procedimiento que para los tejos de lentes considerando las características de la lente generada (curvaturas y espesores finales).

System	Lens	Glass		Diam	Thick	Volume			\$Cost	Status
Field Lens	TPFL2-S2	SILICA		72	16	65.14	STD			ВC
Blue	TBTL1-S1	SILICA		122	10	116.90	STD			ВC
Collimator	TBTL3-S2	SILICA		122.3	14	164.46	STD			ВC
	TBD1L2-S2	N-BK7	SCHOTT	157	15	290.39				В
	TBD2L1-S1	N-BK7		164	28	591.47				В
Blue	TBD2L2-S2	N-BK7		165	19	406.27				В
Camera	TBS1-S2	N-BK7		162	33	680.20				В
	TBS2-S1	N-BK7		134	22	310.26				В
	TRTL1-S1	N-BK7	SCHOTT	122	11	128.59				
Red	TRTL2-S2	N-BK7		122	16	187.04	STD			
Collimator	TRTL3-S2	N-BK7		122	14	163.66				
	TRD1L1-S1	N-BK7		149	14	244.11				
	TRD2L1-S1	N-BK7		156	24	458.72				
Red Camera	TRD2L2-S2	N-BK7		159	17	337.55				
	TRS1-S2	N-BK7		161	28	570.03				
	TRS2-S1	N-BK7		144	23	374.58				
Status Note	Status Notes: B – Blank already bought; C – Lens in construction									

Tabla 5 Detalle de los tejos para contras de pruebas **

** Todos los datos en milímetros

5. DESEMPEÑO Y VERIFICACIÓN DE REQUERIMIENTOS

5.1 Corrector de Dispersión Atmosférica

Sistema: Par de dobletes prismáticos (doblete con una interfaz plana inclinada)

Ángulo de la interfase plana inclinada en primer doblete = $2^{\circ}.355$ y en segundo doblete = $2^{\circ}.540$

Funcionamiento:

- ambos dobletes contra-rotan a un ángulo determinado únicamente por la distancia cenital
- La línea de semi-ángulo entre ambos dobletes se orienta al ángulo paraláctico.

Figura 8 Efecto de la dispersión atmosférica, entre 3500 y 9000 ángstrom, a la altura de SPM (temperatura y presión de diseño) a distancias cenitales de 15° y 30° respectivamente. El cuadro representa una Abertura de 1x1 segundos de arco. El tamaño de cada imagen monocromático está determinado por el telescopio teórico sobre una superficie plana, y es cercano al límite de difracción del telescopio.

Figura 9 Imágenes sobre la rendija, con el corrector de dispersión instalado, cuando el telescopio apunta al cenit (no dispersión atmosférica) y el ángulo de los dobletes prismáticos es el de corrección nula (90°). Se puede apreciar que la presencia del corrector produce una pequeña dispersión y un deterioro no significativo de la imagen respecto al límite de resolución del telescopio.

Aunque las imágenes presentadas en las Figuras 8 y 9 son de Julio de 2004, no se han actualizado ya que en la Figura 8 se presenta la aberración cromática debida a la dispersión atmosférica, en el centro del campo, a dos inclinaciones (15º y 30º) respecto al cenit. En la figura 9, si bien el diseño del corrector de dispersión atmosférica es diferente al de entonces, su comportamiento óptico es muy similar al que se aprecia en la figura.

El mismo razonamiento es válido para las Figuras 10 y 11.

Figura 10 Efecto combinado de la dispersión atmosférica y del tamaño de imagen (telescopio + corrector) cuando el ángulo entre dobletes prismáticos esta a corrección nula (90°). Se muestran varios campos representativos de una rendija de 10' de largo.

Figura 11 Como en la figura anterior pero cuando los dobletes prismáticos son rotados para corregir dispersión atmosférica a una distancia cenital de 60°. Puede verse el excelente desempeño del corrector de dispersión aún a tan altas distancias cenitales.

5.2 Calidad de Imagen del diseño óptico

	0.350000 J 💊	0.399800	0.436500	0.525000	0.613500 <u>)</u>	0.650200	0.700000
0.0833, 0.0000 DEC		~		Q			9
0.0667, 0.0000 DEG	- 	-0	4	¢	è	ě	B
0.0471, 0.0000 DEG		0	٠	۲	è	ò	6
0.0333, 0.0000 DEC		Ø	٠	0	٠	Ò	٥
0,0000, 0,0000 DEG	<u>A</u>	Ø	0	0	0	\bigcirc	۲
-0.0333, 0.0000 DEG	<u></u>	Ø	•	0	٠	\bigcirc	
-0.0471, 0.0000 DEG	2	ø	۳	۲		0	Ô,
-0.0667, 0.0000 DEG	2	Ø	•	0		0	
-0.0833, 0.0000 DEG	Ø	*	>	¢	ø	0	•
SURFACE IMA: CCD SURF	ACE					× .	V

Ancho a Media Altura (brazo azul):

Promedio y rango [μ m] a lo largo de la dispersión: 3.3 (σ =1.4), 0.9-7.4 (rendija 8'); 4.1 (σ =2.1), 0.9-9.9 (rendija 10') μ m]: 3.1 (σ =3.3), 1.3-6.2 (rendija 10')

Longitudes de onda: 350 a 700 nm ; Campos a lo largo de la rendija: +/ - 2', 3', 4' y 5'

El círculo en cada imagen representa el disco de Airy, que varía entre 2.6 a $5.4 \mu m$. A lo largo de la longitud de onda, el diseño produce imágenes comparables al límite de difracción del telescopio. Sobre el CCD , 1" corresponde a 30 micras. La escala de las figuras es de 0.5" ($15\mu m$).

Figura 12 Tamaño de imagen espectroscópica y a lo largo de la rendija del diseño óptico de ESOPO (antes de construcción, de ajuste de índices de refracción de fundido en vidrios y modificación de 2 distancias mínimas entre lentes en la orilla por razones optomecánicas). En su estado actual (antes de construcción, pero después del ajuste a índices de refracción reales y con las distancias ya modificadas), el deterioro en el tamaño de las imágenes es \leq 3 % (~ 0.1 µm) excepto en la imagen máxima que pasa de 9.9 a 10.73 µm (8.35 %).

Figura 13 Tamaño de las imágenes espectroscópicas de diseño (brazo azul) para el conjunto de rejillas de optimización. También se muestra el tamaño proyectado de una rendija de 0.9" incluyendo las distorsiones de la óptica y de la rejilla. Se muestra también la degradación permitida para un muestreo de 2.1 píxeles por elemento de resolución, esa diferencia en cuadratura es el presupuesto de construcción y operación.

Figura 14 Presupuesto de degradación (construcción y operación) dada la calidad de imagen espectroscópica del diseño óptico de ESOPO

5.4 Dispersión y Resolución Espectrales de Diseño

Las siguientes graficas resumen la dispersión y resolución instrumental de ESOPO esperadas por el diseño. Este es un límite superior al desempeño real, dado que el diseño da lugar a un presupuesto de degradación para construcción óptica y mecánica así como de operación y cambios ambientales. En todos los casos se presenta el desempeño del diseño óptico bajo las rejillas de optimización.

El desempeño de operación se presenta en la siguiente sección para un conjunto de rejillas sugeridas de uso.

Figura 15 Dispersión (ángstrom/píxel) de las rejillas de diseño

Figura 16 Resolución del diseño óptico (antes de construcción y operación) para las rejillas de optimización.

Figura 17 Resolución de diseño (en ángstrom) con una rendija de 0.8", para el conjunto de rejillas de optimización. La resolución final (después de construcción y en operación) neta será lo equivalente a 2.1 píxeles (~10% menor que esta de diseño).

Figura 18 Resolución de diseño con la rendija nominal de 0.8". El diseño permite un presupuesto de degradación (por construcción y operación) a un muestreo de 2.1 a 2.2 píxeles.

5.5 Dispersión, Resolución y Cubrimiento espectral neto (rejillas de uso)

Si el presupuesto de construcción y operación es ocupado totalmente, ESOPO tendrá un muestreo espectral de 2.1 a 2.2 píxeles por elemento de resolución bajo una apertura de rendija de 0.8". La siguiente tabla resume los cubrimientos espectrales (cubriendo 90% del detector), dispersiones y resoluciones espectrales para el conjunto de rejillas de uso sugeridas.

Para objetos que llene la rendija (extendidos, mal seeing o mala imagen del telescopio), la resolución baja linealmente con la apertura de rendija y el sobre-muestreo mejora en la misma proporción. Para anchos menores de rendija u objetos no resueltos con buen seeing, la resolución será mayor, pero corriendo riesgos de sub-muestreo.

Grating	Blaze and λc Littrow/22.5°	90% Coverage	Disp	Actual Resolutions	Covering Mode
651 8.94	4750 / 4388	3502 - 6206	0.66	2605 - 4803	Blue Arm
Zeiss*	4070	2704		3509 / 1.39A	
400 9.73	8450 / 7807 7050	5080 - 9000	1.08	2326 - 4239	Red Arm

Tabla 6 Selección de Posibles Reiillas Comerciale

ESOP 2/15/2007			SOPO ISEÑO Ó	PPTICO	CÓDI VERS	GO: esopo-of IÓN: 2	P-A-DO1	
RGL			3920		3106 / 2.27	7A		
500 8.0° RGL	5567 / 51 5250	43	3464 - 7000 3536	0.86	1991 - 412 2893 / 1.82	28 2A	Blue octave	
316 7.6° RGL	8700 / 6750		4220 - 9230 5010	0	1991 - 412 2893 / 1.82	28 2A	Red octave	
725 13.25° DPI	6323 / 58 5810	41	4598 - 6992 2394	0.59	3845 - 613 4723 / 1.23	83 8A	Ηβ – Ηα	
1000 13.5° RGL*	4669 / 43 4380	14	3499 - 5236 1737	0.42	4030 - 634 4910 / 0.89	15 9A	UV- Hβ	

5.6 Eficiencia del sistema

Figura 20 Eficiencias ópticas considerando transmisión, películas anti-reflejantes, espejo dicroico y doblador, así como telescopio.

Figura 21 Eficiencia de ESOPO esperada con rejillas de 600 ll/mm actuales del Boller & Chivens

Figura 5 Eficiencia en operación de dos brazos (cubrimiento espectral total a una resolución cercana a R 3500).

Figura 23 Cociente de eficiencias de ESOPO relativo a la medida con el Boller&Chivens, utilizando la eficiencia realista de una misma rejilla de dispersión así como un telescopio con 0.81 de eficiencia. La ganancia promedio por un factor de tres entre 5500 y 7000 ángstrom, así como en el extremo rojo, se debe principalmente a los mejores detectores de ESOPO (y en menor medida a la óptica). ESOPO en general no solo es significativamente mas eficiente que el Boller&Chievens, sino que cubre el rango espectral total a una mucho mayor resolución y con una sola configuración.

5.7 Detectores

5.8 Eficiencia Esperada del Detector Azul

Figura 24 El detector azul se especifica con una capa broad-band

TÍTULO: DISEÑO ÓPTICO

TYPICAL SPECTRAL RESPONSE

(At -90 °C, measured with astronomy broadband AR coating)

Figura 25 Eficiencia específica del detector azul e2V 42.90 especificado de 2048 x 4608 pixeles de 13.5 micras

5.9 Eficiencia Esperada del Detector Rojo

Figura 26 El detector rojo se especifica con una capa "mid'band" y "deep-depletion". En particular se trata de un e2V 44'82 de 2048 x 4098 pixeles de 15 micras.

5.10 Factores de Eficiencia en Montura Cónica de Rejillas de Difracción

Las siguientes figuras presentan estimaciones que realizamos, con el paquete PCGrate-S de I.I.G, inc (<u>http://www.iigrate.com</u>, <u>http://www.pcgrate.com</u>) que detalladamente modela las propiedades de rejillas de difracción. El propósito es mostrar de manera cuantitativa las propiedades de la montura cónica, en comparación con las monturas clásicas Ebert (normal de la rejilla hacia la cámara) y No-Ebert (normal hacia el colimador), en cuanto a las eficiencias de cada dirección de polarización. Esto es relevante, ya que no encontramos en la literatura una discusión lo suficientemente completa en la literatura.

En resumen, a diferencia de las monturas "en plano", la montura cónica preserva la forma y amplitud de eficiencia Littrow en ambas direcciones de polarización, y al igual que las clásicas las corre hacia el azul por el mismo factor del coseno del ángulo del ángulo de espectrógrafo. La ventaja más importante por la que adoptamos la montura cónica en ESOPO es que, al no intentar separar los haces en la dirección de la dispersión (sino en la dirección espacial) es que permite un ángulo de espectrógrafo menor (especialmente a resoluciones altas con cubrimientos espectrales amplios), independiente de la máxima resolución y manteniendo la amplificación y eficiencia de una montura Littrow. El precio es una inclinación mayor de las líneas espectrales (pero básicamente la misma curvatura de línea). Estos detalles se discuten a profundidad en el documento de diseño conceptual y preliminar de ESOPO

Figura 27 Eficiencias teóricas de una misma rejilla de difracción en dos configuraciones "en plano" y la configuración cónica. En particular, la configuración No-Ebert puede tener una eficiencia para la polarización normal al rayado muy distinta y truncada a la eficiencia nominal (Littrow). La configuración cónica, fuera de plano, preserva la eficiencia Littrow en ambas direcciones de polarización, pero al igual que las configuraciones "clásicas" corriéndola al azul.

Figura 28 Dependencia con la dirección de polarización de una rejilla en configuración cónica. A diferencia de las monturas en-plano, se preserva la forma de las eficiencias en ambas polarizaciones.

6. PROPIEDADES (ÓPTICAS Y MECÁNICAS) DE MATERIALES ÓPTICOS EN ESOPO

Paginas Web relevantes:

www.schott.com www.schott.com/lithotec www.us.schott.com www.oharacorp.com www.ohara-gmbh.com

6.1 Synthetic Fused Silica (Schott Lithotec)

-

ESOPO TÍTULO: DISEÑO ÓPTICO

CÓDIGO: ESOPO-OP-A-DO1 VERSIÓN: 2

λ [mm] (wacum wavelength) n n2225.6 2325.59 1.43290 n1970.6 1970.56 1.43849 n1970.6 1060.00 1.44241 n1060 1.014.25 1.45021 ns 852.35 1.45243 nr 706.71 1.45511 nc 656.28 1.45634 nc 644.03 1.45667 nd 589.46 1.45631 nc 642.98 1.45638 nd 587.73 1.45837 nd 587.73 1.45837 ng 486.27 1.46304 ng 485.13 1.46347 ng 435.96 1.46636 ng 435.92 1.47451 ngat 296.82 1.48870 ngat 193.00 150805	Refracti	ve Indices	aar)			
(maximum versengite) n n2325.6 2325.59 1.43290 n1970.6 1970.56 1.43849 n1530 1530.00 1.44424 n1060 1.060.00 1.44965 nt 1014.25 1.45021 ns 852.35 1.45243 nr 706.71 1.45511 nc 656.28 1.45667 ng 632.98 1.45683 ng 589.46 1.45683 ng 589.46 1.45683 ng 589.46 1.45683 ng 486.27 1.46304 ng 485.13 1.46345 ng 485.13 1.46345 ng 485.13 1.46345 ng 334.24 1.47973 n312.7 312.66 1.48870 n280.4 280.43 1.50837 n280.4 280.43 1.50836 n497 1.50836 1.50836 n4940 1.50836 1.50836	(at 20%	lom]	(al)			
n2325.62325.591.43290n1970.61970.561.43849n15301.530.001.44424n10001.060.001.44965nt1014.251.45021ns852.351.45243nr706.711.45511nc656.281.45634nc'644.031.45667nbe.Ne632.981.45638ng589.461.45837nd587.731.45843ng486.271.46309ng485.121.46666nh404.771.46958ng334.241.47451n312.7312.661.48460ngae296.821.48870n280.4280.431.50837n280.41.508361.50837n444248.351.50837n5451.91.001.56080n194.2193.001.56080n194.2193.001.56080n194.21.32847041.55888n261.32847041.50837n264.34583931.01B16.69422551.01B24.34583931.01B38.716947231.01B39.53414821.02A19.0020.050Ca9.020.050Ca9.020.050Ca9.020.050Ca9.020.050Ca9.020.050Ca9.020.050Ca9.020.050Ca	-	(vacuum wavelength)	n			
n1970.61970.561.43849n15301.530.001.44424n100001.440651.45021nt1014.251.45021ns852.351.45243nr706.711.45511nc656.281.45637nc'644.031.45698nc'589.461.45837nd587.731.45843ne546.231.46004nF486.271.46309nF486.271.46309nF486.271.46666nh404.771.46958ni365.121.47451nga296.821.48840nga296.821.48801nga280.431.50837nga296.821.50837nga280.431.50837nga296.821.50837nga296.821.50837nga296.821.50837nga296.821.50837nga296.821.50837nga296.821.50837nga296.821.50837nga38.71694721.50837nga8.716947210-1Ba6.694225510-1Ba6.694225510-1Ba8.716947210-2Const4.480112310-2Ca9.534148210-2Ca9.534148210-2Ca9.534148210.2Ca9.0020.005Ca9.0020.005Ca <td>n_{2325.6}</td> <td>2325.59</td> <td>1.43290</td>	n _{2325.6}	2325.59	1.43290			
n15301.530.001.44424n100001.060.001.44965nk1014.251.45021ns852.351.45243nr706.711.45511nc656.281.45634nc'644.031.45698nc'632.981.45698nb589.461.45837nd589.461.45843ng546.231.46004nF486.271.46309nF486.271.46309ng435.961.46666nh404.771.46958ni365.121.47451n324.2334.241.47973n312.7312.661.48446n280.4280.431.50837n346296.821.50837n346248.001.50856n194.2193.001.56080n194.2193.001.56080n194.2193.001.56080n194.2193.001.56080n194.21.32847041.55888n264.3458393710 ⁻¹ B38.7169472310 ⁻¹ B38.7169472310 ⁻¹ B38.7169472310 ⁻² Ca9.0020.020Na9.020.020Rice9.0020.020Ca9.0020.010Ca9.0020.010Ca9.0020.010Ca9.0020.010	n _{1970.6}	1970.56	1.43849			
n10001.44963n _t 1014.251.45021n _s 852.351.45243n _r 706.711.45511n _c 656.281.45637n _G 632.981.456837n _{beNe} 632.981.456837n _d 587.731.45843n _d 546.231.46004n _F 486.271.46309n _F 486.271.46666n _h 404.771.46958n ₁₄ 365.121.47451n _{234.2} 334.241.47973n ₁₂₃₇ 312.661.48406n _{296.8} 296.821.48870n _{280.4} 280.431.50837n _{194.2} 1.94.351.50837n _{194.2} 1.94.301.55888n ₄₄₆ 1.93.001.56080n _{194.2} 1.93.001.56080n _{194.2} 1.93.001.56080n _{194.2} 1.93.001.56080n _{194.2} 1.32847041.55888n ₂₆ 4.345839710 ⁻¹ B ₂ 4.345839710 ⁻¹ B ₂ 3.7169472310 ⁻¹ B ₂ 9.534148210 ⁻¹ Const1.32847041020Ca9.0020.001Na9.0020.001Na9.0020.010Ca9.0020.005Ca9.0020.010Na9.0020.010Na9.0020.010Na9.0050.010Na9.0050.010 <td>n₁₅₃₀</td> <td>1530.00</td> <td>1.44424</td>	n ₁₅₃₀	1530.00	1.44424			
nt1014.251.45021ns852.351.45243nr706.711.45511nc656.281.45637nc'632.981.45698nc589.461.45837nd587.731.45843ne546.231.46004nF486.271.46309nk404.771.46958ni365.121.47451nga296.821.48840nga296.821.48840nga280.431.50837nga280.431.50837nga280.431.50837nga280.431.50837nga280.431.50837nga280.431.50837nga280.431.50837nga280.431.50837nga280.431.50837nga280.431.50837nga280.431.50837nga280.431.50837nga280.431.50837nga280.431.50837nga3.508371.50837nga3.51642251.50837nga8.7169472310 ⁻¹ Ba8.7169472310 ⁻¹ Ba3.50.24148231.0 ⁻¹ Ca3.50.24148231.0 ⁻¹ Ga3.50.240.001Na\$0.020.001Na\$0.020.001Na\$0.020.005Ca\$0.020.005Ca\$0.020.005Ca\$0	n ₁₀₆₀	1060.00	1.44965			
ns852.351.45243nr706.711.45511nc656.281.45634nc'644.031.45637ng589.461.45837nd587.731.45843ne587.731.45843ne587.731.45843ne587.731.45843ne486.271.46004np486.271.46309np485.961.46666nh404.771.46958ni365.121.47451n34.2334.241.47973n312.7312.661.48446n280.4280.431.50837n34.2280.431.50836n94.4248.351.50837n84.5193.001.56080n94.6193.001.56080n94.7194.231.55888n84.6193.001.56080n94.7194.231.55886n94.8193.001.56080n94.8193.001.56080n94.8193.001.56080n94.81.3284704910-2Ba8.7169472310-2G21.3284704910-2G21.3284704910-2G23.50.220.00Na≤0.020.60Ki≤0.010.20Ra≤0.020.60Ki≤0.010.05Ca≤0.020.60Ki≤0.010.02Ra≤0.020.01Ra≤0.02	nt	1014.25	1.45021			
nr706.711.45511nc656.281.45634nc'644.031.45637npo589.461.45837nd587.731.45843nc587.731.45843nc486.271.46304np486.271.46307np486.271.46347ng435.961.46666nh404.771.46958ni365.121.47451n34.2334.241.47973n32.3312.661.48446n296.8296.821.48870n280.4280.431.50837n34.2194.231.55888n444193.001.56080n94.2194.231.55888n44193.001.56080n94.2194.231.55888n84.7193.001.56080n94.2193.001.56080n94.2193.001.56080n94.2193.001.56080n94.21.3284704910-2Ba8.7169472310-2G21.3284704910-2G21.3284704910-2G21.3284704910-2G23.531148210-3Ma≤0.020.600Na≤0.020.500QU(21200.50Al≤0.020.60K≤0.010.20Na≤0.020.60K≤0.010.05Cu≤0.0050.010Tace≤0.005 <td>ns</td> <td>852.35</td> <td>1.45243</td>	ns	852.35	1.45243			
nc656.281.45634nc'644.031.45667nkeNe632.981.45698np589.461.45837na587.731.45843na587.731.45843na587.731.46304np486.271.46307np480.131.46347ng435.961.46666nh404.771.46958na365.121.47451n324.2334.241.47973n312.7312.661.48446n296.8296.821.48870n280.4280.431.50837n444248.351.50837n444194.031.55888n446193.001.56080n194.2194.231.55888n447193.001.56080n194.2193.001.56080n194.2193.001.56080n248.4193.001.56080n248.4193.001.56080n248.7193.001.56080n248.7193.001.56080n248.7193.001.56080n248.7193.001.56080n34.81.3284704910-2n33.5716947210-2n23.531148210-2n3≤0.020.600Na≤0.020.600Na≤0.020.600Na≤0.020.010n4≤0.010.020n4≤0.010.050Na≤0.0050.010 <td>n_r</td> <td>706.71</td> <td>1.45511</td>	n _r	706.71	1.45511			
n _{C'} 644.031.45667n _{He-Ne} 632.981.45698n _D 589.461.45837n _d 587.731.45843n _e 546.231.46004n _F 486.271.46309n _{F'} 480.131.46347n _g 435.961.46666n _h 404.771.46958n ₁ 365.121.47451n _{234.2} 334.241.47973n _{212.7} 312.661.48870n _{280.4} 280.431.49401n _{248.4} 248.351.50837n ₈₄₆ 193.001.50856n _{194.2} 194.231.55888n ₄₄₇ 193.001.56080N ₈₄₇ 193.001.56080n ₉₄₆₄ 193.001.56080n ₈₄₆ 193.001.56080n ₉₄₇₅ 193.001.56080n ₈₄₆ 193.001.56080n ₈₄₇₆ 1.3284704910 ⁻² B ₁ 6.6942255 · 10 ⁻¹ B ₂ 4.3458393 · 10 ⁻¹ B ₃ 8.7169472 · 10 ⁻² C ₁ 4.4801123 · 10 ⁻³ C ₂ 1.32847049 · 10 ⁻² C ₃ 9.5341482 · 10 ¹ C ₁ ≤0.020.00Na≤0.020.00Na≤0.020.00Na≤0.020.00Na≤0.020.00Na≤0.020.00Na≤0.020.01Na≤0.020.01Na≤0.0050.01Na≤0.0050.01 <t< td=""><td>nc</td><td>656.28</td><td>1.45634</td></t<>	nc	656.28	1.45634			
nµe.Ne632.981.45698np589.461.45837nq587.731.45843nq587.731.45843nq546.231.46004np486.271.46309np435.961.46666nh404.771.46958nq365.121.47451n34.2334.241.47973n32.7312.661.48406n296.8296.821.48870n280.4248.351.50837n444248.351.50837n445248.041.55888n446193.001.56080n94.2194.231.55888n447193.001.56080n94.2193.001.56080n94.3193.001.56080n94.4193.001.56080n94.5193.001.56080n94.6193.001.56080n94.7193.001.56080n94.8193.001.56080n94.8193.001.56080n94.8193.001.56080n94.8193.001.56080n94.8193.001.56080n94.8193.001.56080n94.81.3284704910-2n21.3284704910-2n21.3284704910-2n21.3284704910-2n49.0020.001n49.0020.001n49.0020.001n49.0020.001n49.0020.010<	n _{C'}	644.03	1.45667			
np589.461.45837nd587.731.45843ne587.731.45843ne546.231.46004nF486.271.46309ng435.961.46666nh404.771.46958ni365.121.47451n334.2334.241.47973n312.7312.661.48446n296.8296.821.48870n280.4248.031.50837n444248.351.50837n445193.001.56080n942194.231.55888n446193.001.56080n942193.001.56080n942193.001.56080n942193.001.56080n942193.001.56080n942193.001.56080n942193.001.56080n942193.001.56080n942193.001.56080n944193.001.56080n945193.001.56080n946193.001.56080n947194.2310-1B16.6942255 10-1B23.314823 10-1B23.3284704 10-2C14.4801123 10-2C21.3284704 10-2C21.3284704 10-2C39.5311482Na\$0.02Na\$0.02Na\$0.02Na\$0.02Na\$0.02Na\$0.02Na\$0.02Na\$0.02 </td <td>n_{He-Ne}</td> <td>632.98</td> <td>1.45698</td>	n _{He-Ne}	632.98	1.45698			
nd587.731.45843ne546.231.46004nF486.271.46309ng435.961.46666nh404.771.46958ni365.121.47451n334.2334.241.47973n312.7312.661.48446n296.8296.821.48870n280.4248.351.50837n942.4248.351.50837n1942.4194.231.55888n447193.001.56080n942.4193.001.56080n942.5193.001.56080n942.6193.001.56080n942.7194.231.55888n447193.001.56080n942.8193.001.56080n942.8193.001.56080n942.8193.001.56080n944.7193.001.56080n944.8193.001.56080n944.8193.001.56080n944.8193.001.56080n944.8193.001.56080n944.8193.001.56080n944.8193.001.56080n94.8193.001.56080n94.8193.001.56080n94.8193.001.56080n94.8193.001.56080n94.8193.001.56080n94.8193.001.56080n94.8193.001.56080n94.91.528470471.56080n94.91.528470471.56080n94.91.528470	n _D	589.46	1.45837			
ne 546.23 1.46004 nF 486.27 1.46309 np 480.13 1.46347 ng 435.96 1.46666 nh 404.77 1.46958 ni 365.12 1.47451 n334.2 334.24 1.47973 n312.7 312.66 1.48446 n296.8 296.82 1.48870 n280.4 280.43 1.49401 n280.4 248.35 1.50837 n466 193.00 1.55888 n447 194.23 1.55888 n446 193.00 1.56080 n447 193.00 1.56080 n446 193.00 1.56080 n447 193.00 1.56080 n446 193.00 1.56080 n447 4.3458393 10-1 B1 6.694225 > 10-1 10 B2 4.3458393 > 10-2 10 G2 1.32847049 > 10-2 2 G2 1.32847049 > 10-	n _d	587.73	1.45843			
nF 4486.27 1.46309 nF 480.13 1.46347 ng 435.96 1.46636 nh 404.77 1.46958 ni 365.12 1.47451 n334.2 3.34.24 1.47973 n312.7 312.66 1.48446 n296.8 296.82 1.48870 n280.4 280.43 1.49401 n280.4 248.03 1.50837 n280.4 248.00 1.50836 n194.2 1.94.23 1.55888 n4F 193.00 1.56080 n194.2 193.00 1.56080 n446 193.00 1.56080 n447 193.00 1.56080 n448 193.00 1.56080 n448 193.00 1.56080 n36 6.694225 5 · 10 ⁻¹ 1.49 B1 6.694225 · 10 ⁻¹ 1.49 B2 4.345839 · 10 ⁻² 1.49 C1 4.480112 ³ · 10 ⁻² 1.49 C2 </td <td>n_e</td> <td>546.23</td> <td>1.46004</td>	n _e	546.23	1.46004			
nF 480.13 1.46347 ng 435.96 1.46666 nh 404.77 1.46958 ni 365.12 1.47451 n334.2 334.24 1.47973 n312.7 312.66 1.48846 n296.8 296.82 1.48870 n280.4 280.43 1.49401 n280.4 248.03 1.50837 n280.4 248.03 1.50836 n280.4 248.03 1.50836 n194.2 193.00 1.56080 n194.2 193.00 1.56080 n44f 193.00 1.56080 n44f 193.00 1.56080 n44f 193.00 1.56080 n44f 193.00 1.56080 n36 6.6942255 10^-1 1.491 B3 8.7169472 10^-1 2.01^-1 G2 1.32847047 10^-1 2.01^-1 G3 8.7169472 10^-1 2.02 G3 9.5341482 10^-1 2.02 G4<	n _F	486.27	1.46309			
ng 435.96 1.46666 nh 404.77 1.46958 ni 365.12 1.47451 n34.2 334.24 1.47973 n312.7 312.66 1.48446 n296.8 296.82 1.48870 n280.4 280.43 1.49401 n280.4 248.03 1.50837 n280.4 248.00 1.50836 n280.4 193.00 1.50836 n194.2 193.00 1.50836 n44 248.35 1.50837 nKr 193.00 1.50808 n44 193.00 1.50808 n44 193.00 1.50808 n44 193.00 1.50808 n47 193.00 1.50808 n48 193.00 1.50808 n49 4.34583937 10 ⁻¹ B3 8.71694723 10 ⁻² G2 1.32847047 10 ⁻² G2 1.3284704 10 ⁻² G2 9.5341482	n _{P'}	480.13	1.46347			
n _h 404.77 1.46958 n _i 365.12 1.47451 n _{324.2} 334.24 1.47973 n _{312.7} 312.66 1.48446 n _{296.8} 296.82 1.48870 n _{280.4} 280.43 1.49401 n _{280.4} 248.35 1.50837 n _{280.4} 248.00 1.50856 n _{248.4} 248.30 1.50837 n _{Ke} 248.00 1.50886 n _{H4.4} 193.00 1.50808 n _{Me} 4.345839.7 10 ⁻¹ B ₂ 4.345839.7 10 ⁻¹ B ₃ 8.716947.2 10 ⁻¹ C ₂ 1.3284704.7 10 ⁻² G ₂ 9.534148.7 10 ⁻² G ₂ 9.534148.7 10 ² <tr< td=""><td>ng</td><td>435.96</td><td>1.46666</td></tr<>	ng	435.96	1.46666			
n _i 365.12 1.47451 n _{334.2} 334.24 1.47973 n _{312.7} 312.66 1.48446 n _{296.8} 296.82 1.48870 n _{280.4} 280.43 1.49401 n _{280.4} 248.35 1.50837 n _{286.4} 248.00 1.50856 n _{194.2} 194.23 1.55888 n _{KF} 193.00 1.56080 n _{Me} 193.00 1.56080 Margetive indices are interpoted form values measured under inter	n _h	404.77	1.46958			
n _{334.2} 334.24 1.47973 n _{312.7} 312.66 1.48446 n _{296.8} 296.82 1.48870 n _{280.4} 280.43 1.49401 n _{248.4} 248.35 1.50837 n _{KF} 248.00 1.50856 n _{194.2} 194.23 1.55888 n _{KF} 193.00 1.56080 n _{MF} 193.00 1.56080 Constances/escuredunder/scures/scure	ni	365.12	1.47451			
n _{312.7} 312.66 1.48446 n _{296.8} 296.82 1.48870 n _{280.4} 280.43 1.49401 n _{248.4} 248.35 1.50837 n _{KF} 248.00 1.50836 n _{194.2} 194.23 1.55888 n _{KF} 193.00 1.56080 n _{MF} 193.00 1.56080 n _{MF} 193.00 1.56080 n _{MF} 193.00 1.56080 n _{MF} 193.00 1.56080 Marrowskassessand under tersteet form values measured under tersteet	n _{334.2}	334.24	1.47973			
n296.8 296.82 1.48870 n280.4 280.43 1.49401 n248.4 248.35 1.50837 nKF 248.00 1.50856 n194.2 194.23 1.55888 nAF 194.23 1.55888 nAF 193.00 1.56080 All refractive indices are interpoted from values measured under interpoted from values measur	n _{312.7}	312.66	1.48446			
n280.4 280.43 1.49401 n280.4 248.35 1.50837 nKiF 248.00 1.50836 n194.2 1.94.23 1.55888 nAr 193.00 1.56080 nAr 193.00 1.56080 All refractive indices are interpreted from values measured under during on throngen atmosphere 1.55888 Toteractive indices are interpreted from values measured under during on throngen atmosphere Const=tractive indices are interpreted from values during of the during on throngen atmosphere Const=tractive indices are interpreted from values during of the during on throngen atmosphere B1 6.6942255 · 10 ⁻¹ B2 4.345839 · 10 ⁻¹ B3 8.716947 · 10 ⁻² C2 1.3284704 · 10 ⁻² C3 9.5341482 · 10 ¹ Trace elements Lithosil TM Q0/Q1 Q2 Al ≤0.02 0.050 Na ≤0.02 0.050 Ca ≤0.02 0.060 Kith ≤0.01 0.050 Ca ≤0.01 0.050 <tr< td=""><td>n_{296.8}</td><td>296.82</td><td>1.48870</td></tr<>	n _{296.8}	296.82	1.48870			
n _{ki} F 248.35 1.50837 n _{ki} F 248.00 1.50856 n _{194.2} 194.23 1.55888 n _{Mi} F 193.00 1.56080 Mirefractive indices are intergraves weasured under divisions on the sensitive under divisions on the sense divisions on the sense di	n _{280.4}	280.43	1.49401			
n _{kf} 248.00 1.50856 n _{194.2} 194.23 1.55888 n _{Af} 193.00 1.56080 All refractive indices are inder or values weasured under vinitrogen atmosphere 1.560800 All refractive indices are inder or values weasured under vinitrogen atmosphere 1.560800 Constative indices are inder or values weasured under vinitrogen atmosphere 1.560800 Constative indices are inder or values weasured under vinitrogen atmosphere 1.560800 Constative indices are inder or values weasured under vinitrogen atmosphere 1.560800 Ba 6.6942257 · 10 ⁻¹ Ba 8.7169472 · 10 ⁻¹ Ba 8.716947 · 10 ⁻² Ca 1.3284704 · 10 ⁻² Ca 9.5341482 · 10 ¹ Trace Lithosil TM Qu/Q1 Q2 Al ≤0.05 0.20 Na ≤0.02 0.60 Ca ≤0.02 0.60 K ≤0.01 0.20 Fe ≤0.05 0.10 Fe ≤0.005 0.05 Cu ≤0.005	n _{248.4}	248.35	1.50837			
n _{194.2} 194.23 1.55888 n _{AF} 193.00 1.56080 All refractive indices are interpolated anosphere 1.56080 All refractive indices are interpolated anosphere 1.56080 Tolerances Constation of the polation of the polatis of the polatis of the polation of the polation of the polatis	n _{KrF}	248.00	1.50856			
n _{ArF} 193.00 1.56080 All refractive indices are interpoted from values resured under d'introgen timosphere I.56080 All refractive indices are interpoted from values refractive indices are interpoted attrosphere I.56080 Ba 6.6942255 · 10 ⁻¹ Ba 6.694225 · 10 ⁻¹ Ba 8.716947 · 10 ⁻² Ca 1.32847047 · 10 ⁻² Ca 1.32847047 · 10 ⁻² Ca 9.534148 · 10 ¹ Trace Lithosil TM Q0/Q1 Lithosil TM Q2 Al ≤0.05 0.20 Na ≤0.02 0.50 Ca ≤0.01 0.20 Na ≤0.02 0.60 K ≤0.01 0.20 Fe ≤0.005 0.10 Ti ≤0.01 0.05 Cu ≤0.005 0.01 Ti ≤0.005 0.01 Fe ≤0.005 0.01 Mn <0.005	n _{194.2}	194.23	1.55888			
All refractive indices are interpolated from values measured under dry nitrogen atmosphere Tolerances of refractive indices ± 2.0 · 10 ⁻⁵ Constatt of Dispersion Formula B1 6.69422575 · 10 ⁻¹ B2 4.34583937 · 10 ⁻¹ B3 8.71694723 · 10 ⁻¹ C1 4.48011239 · 10 ⁻² C2 1.32847049 · 10 ⁻² C3 9.53414824 · 10 ¹ Typical Trace Lithosil TM elements Q0/Q1 Q2 Al ≤0.05 0.20 Na ≤0.02 0.60 K ≤0.01 0.20 Fe ≤0.005 0.10 Ti ≤0.01 0.05 Ca ≤0.02 0.60 K ≤0.01 0.20 Fe ≤0.005 0.10 Ti ≤0.01 0.05 Cu ≤0.005 0.01 Ti ≤0.005 0.01	n _{ArF}	193.00	1.56080			
Tolerances we assume under ary nitrogen atmosphere Tolerances of refractive indices $\pm 2.0 \cdot 10^{-5}$ Constants of Dispersion Formula B1 6.69422575 \cdot 10^{-1} B2 4.34583937 \cdot 10^{-1} B3 8.71694723 \cdot 10^{-1} C1 4.48011239 \cdot 10^{-3} C2 1.32847049 \cdot 10^{-2} C3 9.53414824 \cdot 10^{1} Typical Trace Contamination of the colspan="2">Contamination of the colspan="2" Contamination of the colspan="2"	All refractive indices are interpolated					
Tolerances of refractive indices ± 2.0 · 10 ⁻⁵ Constatus of Dispersion Formula B1 6.6942257 · 10 ⁻¹ B2 4.34583937 · 10 ⁻¹ B3 8.71694723 · 10 ⁻¹ C1 4.4801123 · 10 ⁻³ C2 1.32847049 · 10 ⁻² C3 9.5341482 · 10 ¹ Typical Trace Lithosil [™] Lithosil [™] Parace Lithosil [™] Lithosil [™] Q0/Q1 Q2 Al ≤0.05 0.20 Na ≤0.02 0.50 Ca Ga ≤0.02 0.60 K ≤0.01 0.20 Fe ≤0.01 0.20 Fe ≤0.01 0.20 Fe ≤0.01 0.05 0.10 Trace Cu ≤0.01 0.05 Cu ≤0.01 Ga ≤0.01 0.05 Cu ≤0.01	from values measured under dry nitrogen atmosphere					
Constatute of Dispersion Formula B1 6.6942257 · 10 ⁻¹ B2 4.3458393 · 10 ⁻¹ B3 8.7169472 · 10 ⁻³ C1 4.4801123 · 10 ⁻³ C2 1.3284704 · 10 ⁻² C3 9.5341482 · 10 ¹ Typical Trace Lithosil [™] Lithosil [™] elements 20/02 0.20 Na ≤0.02 0.50 Ca ≤0.02 0.60 K ≤0.01 0.20 Fe ≤0.05 0.10 Ti ≤0.05 0.01 Cu ≤0.01 0.05 Cu ≤0.05 0.01 Fe ≤0.05 0.01 Cu ≤0.05 0.01 Ti ≤0.05 0.01	Tolerances of refractive indices ± 2.0 · 10 ⁻⁵					
B1 6.69422575 · 10 ⁻¹ B2 4.34583937 · 10 ⁻¹ B3 8.71694723 · 10 ⁻¹ C1 4.4801123 · 10 ⁻³ C2 1.3284704 · 10 ⁻² C3 9.5341482 · 10 ¹ Typical Trace C4H0011 Lithosil [™] Lithosil [™] C7 20.05 0.20 Na ≤0.02 0.50 Ca ≤0.02 0.60 K ≤0.01 0.20 Fe ≤0.05 0.110 Ti ≤0.05 0.01 Cu ≤0.01 0.05 Cu ≤0.05 0.10 Ti ≤0.05 0.01 Ti ≤0.01 0.05 Cu ≤0.005 0.01	Constar	nts of Dispersio	on Formula			
B2 4.34583937 · 10 ⁻¹ B3 8.71694723 · 10 ⁻¹ C1 4.48011239 · 10 ⁻³ C2 1.32847049 · 10 ⁻² C3 9.5341482 · 10 ¹ Typical Trace Lithosil [™] Lithosil [™] C4 ≤ 0.05 0.20 Na ≤ 0.02 0.50 Ca ≤ 0.02 0.60 K ≤ 0.01 0.20 Fe ≤ 0.005 0.10 Ti< ≤ 0.01 0.05 Cu ≤ 0.005 0.01 Ti ≤ 0.005 0.01 Mn < 0.005 0.01	B ₁	6.6942257	75 · 10 ⁻¹			
B3 8.71694723 ⋅ 10 ⁻¹ C1 4.48011239 ⋅ 10 ⁻³ C2 1.32847049 ⋅ 10 ⁻² C3 9.5341482 ⋅ 10 ¹ Typical Trace Lithosil [™] Lithosil [™] Trace Q0/Q1 Q2 Al ≤0.02 0.50 Na ≤0.02 0.60 K ≤0.01 0.20 Fe ≤0.05 0.10 Ti ≤0.05 0.01 Gu ≤0.05 0.01 Fe ≤0.05 0.05 Cu ≤0.05 0.01 Ti ≤0.01 0.05 Cu ≤0.05 0.01	B ₂	4.3458393	37 · 10 ⁻¹			
C1 4.48011239 · 10 ⁻³ C2 1.32847049 · 10 ⁻² C3 9.5341482 · 10 ¹ Trace Lithosil™ Lithosil™ Trace Lithosil™ Lithosil™ QQ/Q1 Q2 Q2 Al ≤0.05 0.20 Na ≤0.02 0.60 K ≤0.01 0.20 Fe ≤0.005 0.10 Ti ≤0.01 0.05 Cu ≤0.005 0.01 Mn <0.005 0.01	B ₃	8.7169472	23 · 10 ⁻¹			
C2 $1.32847049 \cdot 10^{-2}$ C3 $9.5341482 \cdot 10^{1}$ Trace Lithosil™ Lithosil™ Trace $Uithosil™$ $Uithosil™$ $Uithosil™$ $QQ/Q1$ $Q2$ Al $≤0.05$ 0.20 0.50 Ca $≤0.02$ 0.60 K $≤0.01$ 0.20 Ea $SO.02$ SO	C ₁	4.48011239 · 10 ⁻³				
C3 9.5341482↓ \cdot 10 ¹ Trace elements Lithosil [™] Q0/Q1 Lithosil [™] Q2 Al ≤0.05 0.20 Na ≤0.02 0.50 Ca ≤0.02 0.60 K ≤0.01 0.20 Fe ≤0.05 0.10 Ti ≤0.05 0.10 Cu ≤0.05 0.05 Cu ≤0.05 0.05 Cu ≤0.05 0.05 Cr ≤0.005 0.01 Mn <0.005	C2 1.32847049 · 10-2					
Typical Trace contamination [ppm] Trace elements Lithosil [™] Q0/Q1 Lithosil [™] Q2 AI ≤ 0.05 0.20 Na ≤ 0.02 0.50 Ca ≤ 0.02 0.60 K ≤ 0.01 0.20 Fe ≤ 0.005 0.10 Ti ≤ 0.01 0.05 Cu ≤ 0.005 0.01 Ti ≤ 0.005 0.01 Mn < 0.005 0.01	C3 9.53414824 · 101					
Trace containing (ppm)Trace elementsLithosil TM Lithosil TM Q0/Q1Q2Al ≤ 0.05 0.20Na ≤ 0.02 0.50Ca ≤ 0.02 0.60K ≤ 0.01 0.20Fe ≤ 0.005 0.10Ti ≤ 0.01 0.05Cu ≤ 0.005 0.05Cr ≤ 0.005 0.01Mn < 0.005 0.01	Tunical Trace Contaminants [com]					
elements Q0/Q1 Q2 AI ≤0.05 0.20 Na ≤0.02 0.50 Ca ≤0.02 0.60 K ≤0.01 0.20 Fe ≤0.055 0.10 Ti ≤0.01 0.05 Cu ≤0.005 0.01 Mn <0.005	Trace	Lithosil TM	Lithosil TM			
AI ≤ 0.05 0.20 Na ≤ 0.02 0.50 Ca ≤ 0.02 0.60 K ≤ 0.01 0.20 Fe ≤ 0.005 0.10 Ti ≤ 0.01 0.05 Cu ≤ 0.005 0.01 Mn < 0.005 0.01	element	s Q0/Q1	Q2			
Na ≤ 0.02 0.50 Ca ≤ 0.02 0.60 K ≤ 0.01 0.20 Fe ≤ 0.005 0.10 Ti ≤ 0.01 0.05 Cu ≤ 0.005 0.01 Cr ≤ 0.005 0.01 Mn < 0.005 0.01	Al	≤0.05	0.20			
Ca ≤ 0.02 0.60 K ≤ 0.01 0.20 Fe ≤ 0.005 0.10 Ti ≤ 0.01 0.05 Cu ≤ 0.005 0.01 Cr ≤ 0.005 0.01 Mn < 0.005 0.01	Na	≤0.02	0.50			
K ≤0.01 0.20 Fe ≤0.005 0.10 Ti ≤0.01 0.05 Cu ≤0.005 0.05 Cr ≤0.005 0.01 Mn <0.005	Ca	≤0.02	0.60			
Fe ≤0.005 0.10 Ti ≤0.01 0.05 Cu ≤0.005 0.05 Cr ≤0.005 0.01 Mn <0.005	к	≤0.01	0.20			
Ti ≤0.01 0.05 Cu ≤0.005 0.05 Cr ≤0.005 0.01 Mn <0.005	Fe	≤0.005	0.10			
Cu ≤0.005 0.05 Cr ≤0.005 0.01 Mn <0.005 0.01	Ti	≤0.01	0.05			
Cr ≤0.005 0.01 Mn <0.005 0.01	Cu	<0.005	0.05			
Mn <0.005 0.01	Cr	<0.005	0.01			
	Mn	≤0.005	0.01			

 $n_d = 1.45843$ $n_{\rm F} - n_{\rm C} = 0.00675$ $v_d = 67.87$ $v_e = 67.67$ $n_{\rm e} = 1.46004$ n_{F'} - n_{C'} = 0.00680 Relative Partial Dispersion $\mathsf{P}_{\mathsf{s},\mathsf{t}}$ 0.3290 P_{C,s} 0.5780 P_{d,C} 0.3097 P_{e,d} 0.2390 P_{g,F} 0.5280 P_{i,h} 0.7288 Deviation of Relative Partial Dispersions from "Normal Line" 0.0401 $\Delta P_{C,t}$ ΔP_{C,s} 0.0169 $\Delta P_{F,e}$ -0.0014 $\Delta P_{q,F}$ -0.0016 0.0066 $\Delta P_{i,g}$ Temperature Coefficients of relative Refractive Index +20/+40°C Δn/ΔT [10-6/K] 9.7 n_{C'} 9.8 9.9 10.1 10.3 10.5 10.9 **Thermal Properties** Strain point T₁₀^{14.5} [°C] 980 Annealing point T₁₀^{13.0} [°C] 1080 Softening point 1600 T10^{7.6} [°C] Mean specific heat 0.79 Cp (20°-100°C) []/g · K] Heat conductivity 1.31

0.5

_		
	Mechanical Propertie	es
	Young's modulus (25°C) [GPa]	72
	Shear modulus (25°C) [GPa]	31
	Compressive strength [N/mm²]	1250
,	Bending strength [N/mm²]	80–100
	Poisson's ratio µ	0.17
	Knoop HK 0.1/20	580
	Mohs	5-6
	Density p [g/cm³]	2.2
	Stress optical coefficient [1/Pa]	3.4 · 10 ⁻¹²
	Longitudinal ultrasonic velocity [m/s]	5940
	Transversal ultrasonic velocity [m/s]	3770
	Internal damping (25°–500°C)	2.0 · 10 ⁻⁵
		< 1 / PT
	+20/+40 [°C]	a for dn/d1
	D _o	2.06 · 10 ⁻³
	D1	2.51 · 10-°
	D ₂	- 2.47 · 10-11
	Eo	3.12 · 10-7
	E1	4.22 · 10 ⁻¹⁰
	λ _{τκ} [μm]	0.16
	Electrical Properties	
	Dielectric constant e _r	3.8 ± 0.2
	Dielectric loss angle φ (25°C/1MHz)	89.92° ± 0.03°
	tan δ (δ = 90° – φ) (25°C/1MHz)	(14 ± 5) · 10 ⁻⁴
	Electrical resistivity (20°C) [Ω · cm]	1.15 · 10 ¹⁸
-	10 C	

Formula for Dispersion and dn/dT according to SCHOTT Optical Glass catalogue

6.2 Calcium Fluoride CaF2 (Schott Lithotec)

nd

n,

n_F

ng nh

ni

λ (32°G) [W/(m · K)] Linear thermal

expansion coefficient $\alpha_{(25^\circ-100^\circ C)}$ [10⁻⁶/K]

ESOPO

TÍTULO: DISEÑO ÓPTICO

Refractive Indices (at 22°C and nitrogen athmosphere)				
	λ [nm] (vacuum wavelength)	n		
N1970.1*	1970.09	1.42396		
n1529.6*	1529.58	1.42611		
N1060*	1060.00	1.42850		
nt	1013.98	1.42879		
n _s	852.11	1.43002		
nr	706.52	1.43166		
nc	656.27	1.43245		
n _{C'}	643.85	1.43267		
NHe-Ne	632.80	1.43288		
np	589.29	1.43380		
n _d	587.56	1.43384		
n _e	546.07	1.43493		
Π¢	486.13	1.43701		
n _{F'}	479.99	1.43727		
ng	435.83	1.43947		
nh	404.66	1.44149		
ni	365.01	1.44489		
N334.1	334.15	1.44849		
N312.6	312.57	1.45174		
N296.7	296.73	1.45464		
N280.4	280.40	1.45825		
n _{KrF}	248.30	1.46793		
N193***	193.00	1.50180		
N157**	157.6299	1.55927		

* tolerances of refractive indices: n 193 $\leq \lambda \leq 1970.09 = \leq 1\cdot10^{-5}$ n 157 $\leq 5\cdot10^{-6}$ ** separate measurement at NIST on 08-01-00 *** separate measurement at Ohara on 03-05-97

Mechanical Properties*	
Young's modulus (25°C) [GPa]	89.9
Shear modulus (25°C) [GPa]	31.0
Compressive strength [GPa]	83.8
Poission's ratio μ	0.26
Knoop [MPa]	1.478
Mohs	4.0
Density p [q/cm ³]	3.18

* all values related to (111) direction

λ	CaF ₂		
(nm)	(q ₁₁ -q ₁₂) (10 ⁻¹² Pa ⁻¹)	q ₄₄ (10 ⁻¹² Pa ⁻¹)	
637.8*	-1.46 ± 0.01	0.71 ± 0.01	
546.4	-1.53 ± 0.02	0.75 ± 0.01	
436.0	-1.55 ± 0.02	0.74 ± 0.01	
365.1	-1.57 ± 0.02	0.74 ± 0.01	
253.7	-1.66 ± 0.02	0.73 ± 0.01	
193.1	-1.77 ± 0.02	0.66 ± 0.01	
156.1	-1.91 ± 0.05	0.45 ± 0.01	
157.63 (linear int.)	-1.90	0.46	

(John Burnett - 10-01-01)

The Constants of the Sellmeier	Dispersion Formula*
B1	6.300482 · 10 ⁻¹
B2	4.086471 · 10 ⁻¹
B3	5.864832 · 10-1
C1	2.850724 · 10-3
C2	1.069618 · 10-2
C3	1.843724 · 10 ²

* valid for 184 nm < λ < 1970 nm

Chemical/Electrical Properties	
Solubility in water [g/l] 20°C	0.016
Crystal Type	single crystal, synthetic
Crystal structure	cubic; CaF ₂ type structure
Cleavage Planes	(111)
Lattice constant [nm]	0.546342

Rel. Temperature Coefficient (at 20°C and 1.0133 · 10 ⁵ bar)				
+20/+40°C	Δn / ΔT [10-6 / K]			
n _{C'}	-11.5			
n _d	-11.4			
n _e	-11.4			
n _F	-11.2			
na	-11.1			
nh	-11.0			
n	-10.8			
n ₁₉₃	- 2.9			
n ₁₅₇	8.0			

Thermal Properties	
Melting point [°C]	appr. 1400
Mean specific heat	
Cp (20'-100°C)	854
[j/(kg · K)]	
Heat conductivity	0.71
λ (20°C) [W/(m · K)]	9.71
Linear thermal	
Expansion coefficent	16.7
α _(0°-25°C) [10-6/K]	

Standard orientation <111>; other orientations on request.

6.3 K10 (Schott)

.....

ESOPO

TÍTULO: DISEÑO ÓPTICO

CÓDIGO: **ESOPO-OP-A-DO1** VERSIÓN: 2

SCHOTI			OPTI	GAL GLA	55		n		
K10				4 50497	1)	50.44		0.00	0000
501564	252		n _d =	1.50137	1)	• = 56.41 - 56.15	nF - nc	-0.00	8067
501504	.252		n _e –	1.50549	0	e - 50.15	n F' - n C'	- 0.00	0907
Refractiv	ve Indice	es	Intern	al Trans	mittand	e τ _i	Relative Pa	rtial	
	λ [nm]		λ [nm] T ₁ [10	mm1 τ	[25mm]	Dispersion		
n 2225 4	2325.4	1.47507	2500	0.77	0.	.52	P _{s.t}	0.28	35
n 1970 1	1970.1	1.48008	2325	0.83	0.	.63	P C,s	0.53	85
n 1529.6	1529.6	1.48536	1970	0.937	0.	850	P d,C	0.30	37
n 1050 0	1060.0	1.49076	1530	0.993	0.	983	P _{e,d}	0.23	82
n,	2024.0	1.49137	1060	0.998	0.	996	P g,F	0.54	75
n .	852.1	1.49389	700	0.999	0.	.997	P i,h	0.78	88
n,	706.5	1.49713	660	0.998	0.	994		1	
nc	656.3	1.49867	620	0.997	0.	993	P' s,t	0.28	10
n c'	643.8	1.49910	580	0.997	0.	.993	P' c',s	0.58	17
n 632.8	632.8	1.49950	546	0.997	0.	992	P' d,C'	0.25	31
n	589.3	1.50129	500	0.996	0.	.991	P' e,d	0.23	62
n d	587.6	1.50137	460	0.996	0.	.990	P' g,F'	0.48	60
n .	546.1	1.50349	436	0.995	0.	988	P' i,h	0.78	19
ne	486.1	1.50756	420	0.995	0.	988		1	
n E'	480.0	1.50807	405	0.995	0.	987	-		
n .	435.8	1.51243	400	0.994	0.	986	Deviation o	f Rela	tive
n b	404.7	1.51649	390	0.993	0.	982	Partial Disp	ersio	ns∆P
n	365.0	1.52350	380	0.989	0.	.973	from the "N	orma	Line"
n 334.1	334.1	1.53120	370	0.986	0.	966	Δ P c.t	0.00	94
n 312.6	312.6	1.53844	365	0.983	0.	958	Δ P c.s	0.004	41
n 296 7	296.7		350	0.963	0.	.910	Δ P Fe	-0.00	07
n 280.4	280.4		334	0.877	0.	720	ΔPg.F	-0.00	15
n 248.3	248.3		320	0.626	0.	.310	ΔPi.g	-0.00	48
240.0		,	310	0.370	0.	13		1	
Constan	ts of Dis	spersion	300	0.14	0.	02	L		
Formula			290	0.00	0.	00	Other Prop	erties	
B1	1.15687	7082	280	0.00	0.	00	0.30/+70°c[10-6/K] 6.		6.5
B ₂	0.06426	625444	270	0.00	0.	00	(X+20/+300°C[10	0-6/K]	7.4
B ₂	0.87237	6139	260	0.00	0.	00	T _a [°C]		459
C ₁	0.00809	424251	250	0.00			T ₁₀ ^{13.0} [°C]		453
C ₂	0.03860	51284					T10 ^{7.6} [°C]		691
C ₂	104.747	73	11				c _o [J/(a·K)]		0.77
03							λ[W/(m·K)]		1.12
Constan	ts of Dis	spersion	Color	Code					
dn/dT		peroien	280/25		3	3/30	o[g/cm ³]		2.52
Do	4 86e-06		1.0001100				E[10 ³ N/mm	2]	65
D.	1.72e-08		Rema	rks			μ		0.19
D2	-3.02e-11						K[10 ⁻⁶ mm ² /	N1	3.12
E ₂	3.82e-07						HK0 1/20		470
E.	4.53e-10		Relativ	ve price			HG		4
L1 4.05e-10									
							в		1
Tempera	Temperature Coefficients of Refractive Index								
	An-	AT[10-6	/K1	Δn _{at}) ⁻⁶ /K1	CR		1
[°C]	1060.0	e	a	1060.0	6		FR		0
-40/-20	3.2	3.9	4.5	1.3	1.8	24	SR		1
+20/+40	3.6	4.2	4.9	2.3	2.9	3.6	AR		1
+60/+80	3.8	4.5	5.2	2.8	3.4	4.2	PR		1.2
As of 00/	03/2004	Subject	to obars	2.0	0.4		SCUOTT (Intiga	Glass
AS 01 09/	03/2001/	Subject	to chang				SCHOLL	optica	01455

6.4 N-PK52 (Schott)

ESOPO

TÍTULO: DISEÑO ÓPTICO

CÓDIGO: **ESOPO-OP-A-DO1** VERSIÓN: 2

SCHOTT	T		OPTI	CAL GLA	SS		РК		
N-PK5	2A		nu-	1 497	υ _d	- 81 61	DF - De	- 0.00	6090
497816	6.369		n _e =	1.49845	Ue	= 81.21	n⊧ - nc	= 0.00	6138
Refracti	ve Indic	es	Intern	nternal Transmittance Ti Relative Partial					
L	<u>λ [nm]</u>	4 470.00	λ [nm	$\frac{1}{\tau_{i}}$ [10	mm] τ_i	[25mm]	Dispersion	0.20	10
n 2325.4	2325.4	1.47966	2500	0.99	0.9	97	P s,t	0.20	17
n 1970.1	1970.1	1.482/9	1070	0.99	0.3	90	P do	0.30	55
n 1529.6	1060.0	1.40010	1570	0.998	0.0	994	P ad	0.23	38
n 1060.0	2024.0	1.49012	1060	0.998	0.9	994	Par	0.53	77
n.	852.1	1.49184	700	0.997	0.9	993	Pih	0.747	70
n,	706.5	1.49408	660	0.997	0.9	993	,	1	
nc	656.3	1.49514	620	0.998	0.9	995	P' s,t	0.279	97
n c'	643.8	1.49544	580	0.999	0.9	997	P' c',s	0.58	58
n 632.8	632.8	1.49571	546	0.999	0.9	997	P' d,C'	0.254	48
n _D	589.3	1.49695	500	0.998	0.9	996	P'e,d	0.236	69
n d	587.6	1.49700	460	0.997	0.9	992	P' g,F'	0.477	74
n e	546.1	1.49845	436	0.996	0.9	990	P' i,h	0.74	12
n F	486.1	1.50123	420	0.996	0.9	990			
n F'	480.0	1.50157	405	0.997	0.9	992			
n g	435.8	1.50450	400	0.997	0.9	992	Deviation of	of Rela	tive
n _h	404.7	1.50720	390	0.997	0.9	992	Partial Disp	persion	ns∆P
n i	365.0	1.51175	380	0.996	0.9	989	from the "N	lorma	Line"
n 334.1	334.1	1.51658	370	0.992	0.9	980		-0.10	84
n 312.6	312.6	1.52096	365	0.988	0.9	970	Δ P c,s	-0.05	14
n 296.7	296.7	1.52489	350	0.950	0.0	880		0.010	13
n 280.4	260.4		334	0.631	0.0	200	A P g,F	0.03	7
n 248.3	240.3	<u> </u>	210	0.010	0.	12	Δ F i,g	0.14	
Constan	te of Di	norcion	200	0.420	0.	12	L		
Formula		spersion	290	0.23	0.0	n1	Other Prop	ortios	
B.	1.02960)7	280	0.04	0.0	00	(<i>μ</i> -30/±70°c[10 ⁻⁶ /K] 1		12.93
B	0.18805	506	270	0.01	0.0	00	Q+20/+300°C[1	0-6/K1	15.07
B ₂	0.73648	38165	260	0.00	0.0	00	T _n [°C]		453
C ₁	0.00516	6800155	250	0.00			T ₁₀ ^{13.0} [°C]		454
C ₂	0.01666	658798					T ₁₀ ^{7.6} [°C]		523
C ₃	138.964	1129	1				c _p [J/(g·K)]		0.67
							λ[W/(m·K)]		0.73
Constan	ts of Dis	spersion	Color	Code					
dn/dT			λ_{80}/λ_5	λ ₈₀ /λ ₅ 34/28			ρ [g/cm³]		3.69
D ₀	-1.97e-	05					E[10 ³ N/mm	1 ²]	71
D1	-5.5e-0	9	Rema	rks			μ		0.298
D ₂	5.28e-12						K[10 ⁻⁶ mm ² /	[N]	0.67
E ₀	3.6e-07						HK _{0.1/20}		370
E1 2.45e-10		Relati	ve price			HG		6	
<i>ι</i> τκ ί μ μ]	0.172								1
Tomas	ture C-	officient	e of Def	ranting l	ndor		B		-
rempera	Arr	JATI10-6	/k1	An		-6/ K 1	CR		1
			1060.0			FR		0	
40/-20	-5.7	-5.4	-5.1	-7.7	-7.4	-71	SR		52.3
+20/+40	-6.7	-6.4	-6	-8	-7.7	-7.4	AR		3.3
+60/+80	-7.1	-6.8	-6.4	-8.1	-7.8	-7.5	PR		4.3
As of 01/	09/2003	/ Subject	to chance	le			SCHOTT	Optica	I Glass

6.5 S-FPL53 (OHara)

ESOPO TÍTULO: DISEÑO ÓPTICO

S-FPL53

439950 440946

0.8373 0.3529 0.3066

0.5454 1.2274

Refractive Index	n _d	1.43875 1.438750	Abbe Number ν_{d}	95.0 94.93	Dispersion NF-NC	0.00462 0.004622
Refractive Index	n _e	1.439854	Abbe Number ν_{Θ}	94.49	Dispersion NF' - NC'	0.004655

Refractive Indices					
	λ (μm)				
N2325	2.32542	1.42512			
N 1970	1.97009	1.42762			
N1530	1.52958	1.43032			
N1129	1.12864	1.43269			
nt	1.01398	1.43346			
ns	0.85211	1.43480			
na′	0.76819	1.43570			
nr	0.70652	1.43652			
nc	0.65627	1.43733			
n _{c'}	0.64385	1.43756			
n _{He-Ne}	0.6328	1.43777			
n _D	0.58929	1.43871			
n _d	0.58756	1.43875			
ne	0.54607	1.43985			
n _F	0.48613	1.44195			
n _F ′	0.47999	1.44221			
n _{He-Cd}	0.44157	1.44410			
ng	0.435835	1.44442			
nh	0.404656	1.44645			
ni	0.365015	1.44986			

Partial Dis	persions	Relative Partia	Dispersions
nc–nt	0.003870	θc,t	0.837
nc-na'	0.001631	θc,a′	0.352
n₄−nc	0.001417	θd,C	0.306
n _e -nc	0.002521	θe,C	0.5454
ng-nd	0.005673	$\theta_{g,d}$	1.2274
ng-nF	0.002468	θg,F	0.534
n _h -n _g	0.002028	$\theta_{h,g}$	0.438
n _i _n _g	0.005437	$\theta_{i,g}$	1.176
n _{C'} -n _t	0.004097	θ´c´,t	0.880
n _e -n _C ′	0.002294	θ´e,C'	0.492
n _F -n _e	0.002361	θ F,e	0.507
ni-nf'	0.007645	θí,F	1.642

Thermal Properties	
merina Properues	
Strain Point StP (°C)	_
Annealing Point AP (°C)	_
Transformation Temperature Tg (°C)	426
Yield Point At (°C)	456
Softening Point SP (°C)	_
Expansion Coefficients (-30~+70°C)	145
α (10 ⁻⁷ /°C) (+100~+300°C)	169
Thermal Conductivity k (W/m+K)	0.857

Mechanical Properties Young's Modulus E (10⁹N/m²)

σ

Hk

Aa

β

Chemical Properties Water Resistance (Powder) Group RW (P)

Rigidity Modulus G (10⁹N/m²)

Acid Resistance (Powder) Group RA(P)

Weathering Resistance (Surface) Group W(S)

Acid Resistance (Surface) Group SR

Phosphate Resistance PR

Poisson's Ratio

Knoop Hardness

Photoelastic Constant

(nm/cm/10⁵Pa)

Abrasion

691

265 0.303

320[3] 451

0.57

1

3

3

52.3 4.3

Deviation of Relative Partial Dispersions $\Delta \theta$ from "Normal"						
Δθc,t	-0.1548					
$\Delta \theta c_{,A'}$	-0.0381					
$\Delta \theta_{g,d}$	0.0598					
$\Delta \theta_{g,F}$	0.0461					
$\Delta \theta_{i,g}$	0.2462					

Constants of Dispersion Formula					
A ₁	9.83532327•10-1				
A ₂	6.95688140•10 ⁻²				
A ₃	1.11409238				
B1	4.92234955•10 ⁻³				
B ₂	1.93581091•10 ⁻²				
B₃	2.64275294•10 ²				

Other Properties					
Bubble Quality Group	В	В			
Specific Gravity	d	3.62			
Remarks					

	Temperature Coefficients of Refractive Index							
Range of Tem	perature		dr	∖/dtrela	ative (1	0 ⁻⁶ /℃)	
(°C)		t	C	He-Ne	D	е	F	g
-40 ~	-20	-5.9	-5.8	-5.8	-5.7	-5.7	-5.6	-5.5
–20 ~	0	-6.2	-6.1	-6.1	-6.1	-6.0	-5.9	-5.8
0~	20	-6.5	-6.4	-6.4	-6.4	-6.3	-6.2	-6.1
20 ~	40	-6.9	-6.8	-6.7	-6.7	-6.6	-6.5	-6.4
40 ~	60	-7.2	-7.1	-7.1	-7.0	-7.0	-6.8	-6.7
60 ~	80	-7.5	-7.4	-7.4	-7.3	-7.3	-7.2	-7.0

θg,F	0.5340
$\theta_{h,g}$	0.4388
$\theta_{i,g}$	1.1763
θ´c´,t	0.8801
θ _{e,C}	0.4928
θ ́F',e	0.5072
θí,F	1.6423
Colo	ring
λ 80/λ5	33/29

Internal Transmittance				
λ (nm)	τ 10mm			
280	0.04			
290	0.12			
300	0.28			
310	0.51			
320	0.71			
330	0.85			
340	0.928			
350	0.967			
360	0.985			
370	0.992			
380	0.996			
390	0.997			
400	0.996			
420	0.995			
440	0.995			
460	0.996			
480	0.997			
500	0.998			
550	0.999			
600	0.998			
650	0.997			
700	0.998			
800	0.998			
900	0.997			
1000	0.997			
1200	0.998			
1400	0.998			
1600	0.998			
1800	0.998			
2000	0.998			
2200	0.997			
2400	0.998			

OHARA 02-06,99-012

6.6 N-BAK2 (Schott)

PÁGINA: 52 DE 94

ESOPO

TÍTULO: DISEÑO ÓPTICO

CÓDIGO: **ESOPO-OP-A-DO1** VERSIÓN: 2

SCHOTT	Ţ.		OPTIC	CAL GLAS	SS		BAK		
N-BAK	2		n	1 52006	υ	H - 50 71	n - n	- 0.00	0042
540597	286		nd -	1.54212	υ	= 59.71	nF - nc	= 0.00	9120
					-		IIF - IIC		
Refractiv	ve Indice	es	Intern	al Trans	mittand	ce T _i	Relative Pa	rtial	
	λ [nm]		λ [nm] τ _i [10	mm] τ	[25mm]	Dispersion		
n 2325.4	2325.4	1.51387	2500	0.76	0.	.50	P _{s,t}	0.28	10
n 1970.1	1970.1	1.51871	2325	0.83	0.	.63	P C,5	0.538	82
n 1529.6	1529.6	1.52385	1970	0.937	0.	.850	P d,C	0.304	42
n 1060.0	1060.0	1.52919	1530	0.994	0.	.984	P _{e,d}	0.238	85
n t	2024.0	1.52980	1060	0.999	0.	.997	P _{g,F}	0.543	37
n s	852.1	1.53234	700	0.998	0.	.996	P i,h	0.769	95
n r	706.5	1.53564	660	0.998	0.	.995			
nc	656.3	1.53721	620	0.998	0.	.994	P' s,t	0.278	87
n c'	643.8	1.53765	580	0.998	0.	.995	P' c',s	0.58	17
n 632.8	632.8	1.53806	546	0.998	0.	.995	P' d,C'	0.25	36
n _D	589.3	1.53988	500	0.998	0.	.994	P'e,d	0.23	04 DC
n d	587.6	1.53996	460	0.997	0.	.992	P' g,F'	0.48	26
n e	546.1	1.54212	436	0.997	0.	.992	P'i,h	0.76	30
n _F	486.1	1.54625	420	0.997	0.	.993			
n _{F'}	480.0	1.54677	405	0.997	0.	.993			
n g	435.8	1.55117	400	0.997	0.	.993	Deviation o	f Rela	tive
n _h	404.7	1.55525	390	0.997	0.	.992	Partial Disp	ersio	
n i	365.0	1.56221	300	0.996	0.	.990	from the N		Line
n 334.1	334.1	1.509/1	3/0	0.990	0.	.909		-0.00	20
n 312.6	312.0	1.5/000	250	0.994	0.	.900		0.00	n. 1. J.
n 296.7	290.7	1.30207	334	0.900	0.	9/1	AP -	0.000	n4
n 280.4	248.3		320	0.903	0	700		-0.00	27
n 248.3	240.5]	310	0.607	0	40		-0.00	21
Constan	te of Die	pareion	300	0.055	0.	10	L		
Formula		spersion	290	0.40	0.	00	Other Prop	erties	
B.	1.01662	2154	280	0.04	0	00	(C-30/#70°C[10	⁶ / K 1	8
B	0.31990	3051	270	0.00	0.	00	Q+20/+300°C[10	0-6/K1	9
B ₂	0.93723	32995	260	0.00	0.	00	T _e [°C]		554
C.	0.00592	2383763	250	0.00			T ₁₀ ^{13.0} [°C]		550
C ₂	0.02038	328415					T ₁₀ ^{7.6} [°C]		727
C ₂	113.118	3417	i	1			c _p [J/(q·K)]		0.69
0,							λ[W/(m·K)]		0.92
Constan	ts of Dis	spersion	Color	Code					i
dn/dT			λ80/λ5		3	2/28	ρ [g/cm³]		2.86
D ₀	-1.45e-0)6					E[10 ³ N/mm	2]	71
D ₁	1.1e-08		Remai	'ks			μ		0.233
D ₂	4.89e-1	2					K[10 ⁻⁶ mm ² /	N]	2.6
E ₀	5.16e-0	7]				HK _{0.1/20}		530
E1	3.05e-1	0	Relativ	/e price			HG		2
λτκ[μm]	0.164								
							В		1
Tempera	ature Co	efficients	s of Refi	active I	ndex	0.44.67			
	∆n _{re}	"/∆T[10-6/	/K]	Δn_{ab}	_{ss} /∆T[10)•₀/K]	CR		2
[°C]	1060.0	е	g	1060.0	e	g	FR		0
-40/-20	1.1	1.8	2.3	-0.9	-0.3	0.2	SR		1
+20/+40	1	1.7	2.3	-0.3	0.3	0.9	AR		1
+60/+80	1.1	1.8	2.4	0.1	0.8	1.4	PR		2.3
As of 07/	19/2002/	Subject	to chang	е			SCHOTT (Optica	I Glass

6.7 N-BAK1 (Schott)

COLLOTT

ESOPO

TÍTULO: DISEÑO ÓPTICO

DAV

CÓDIGO: **ESOPO-OP-A-DO1** VERSIÓN: 2

SCHOTT			OPTIC	AL GLAS	55		DAN		
N-BAK	1			1 5725	1)-			- 0.00	0049
573576	310		n _d =	1.5725	1)-	= 57.55	nF - nc	= 0.00 = 0.01	9948 0039
575570			ne –	1.07407			UE, - UC,	- 0.01	0000
Refractiv	ve Indice	es	Interna	al Trans	mittanc	eτi	Relative Pa	rtial	
	λ [nm]		λ [nm]	τ _i [10ι	mm] τ _i	[25mm]	Dispersion		
n 2325.4	2325.4	1.54556	2500	0.81	0.	58	P _{s,t}	0.27	12
n 1970.1	1970.1	1.55032	2325	0.88	0.	72	P _{C,s}	0.53	01
n 1529.6	1529.6	1.55543	1970	0.960	0.	903	P d,C	0.302	29
n 1060.0	1060.0	1.56088	1530	0.994	0.	986	P _{e,d}	0.238	34
n _t	2024.0	1.56152	1060	0.998	0.	996	P _{g,F}	0.54	72
n s	852.1	1.56421	700	0.999	0.9	997	P i,h	0.778	38
n _r	706.5	1.56778	660	0.998	0.9	995			
n c	656.3	1.56949	620	0.998	0.	995	P' s,t	0.268	37
n c'	643.8	1.56997	580	0.998	0.9	995	P' c',s	0.573	30
n 632.8	632.8	1.57041	546	0.998	0.9	995	P' d,C'	0.252	25
n _D	589.3	1.57241	500	0.997	0.9	992	P' e,d	0.236	52
n d	587.6	1.57250	460	0.996	0.9	990	P' g,F'	0.48	55
n e	546.1	1.57487	436	0.996	0.	989	P' i,h	0.77	17
n _F	486.1	1.57943	420	0.996	0.	990			
n _{F'}	480.0	1.58000	405	0.996	0.	990			
n a	435.8	1.58488	400	0.996	0.	990	Deviation o	f Rela	tive
n _h	404.7	1.58941	390	0.995	0.9	988	Partial Disp	ersio	ns∆P
n i	365.0	1.59716	380	0.993	0.	983	from the "N	ormal	Line"
n 334.1	334.1	1.60554	370	0.991	0.9	977	∆ P c,t	-0.01	67
n 312.6	312.6	1.61326	365	0.987	0.	969	Δ P _{C,s}	-0.00	69
n 296.7	296.7		350	0.971	0.	930	Δ Ρ _{F,e}	0.000	06
n 280.4	280.4		334	0.924	0.3	820	Δ P _{g,F}	0.000)2
n 248.3	248.3		320	0.799	0.	570	ΔPi,g	-0.00	75
			310	0.609	0.2	29			
Constan	ts of Dis	spersion	300	0.34	0.0	07			
Formula	I		290	0.10	0.0	00	Other Prope	erties	
B ₁	1.12365	5662	280	0.01	0.0	00	α30/+70°c[10 ⁻	⁶ /K]	7.6
B ₂	0.30927	6848	270	0.00	0.0	00	α+20/+300°c[10) ⁻⁶ /K]	8.6
B ₃	0.88151	1957	260	0.00	0.0	00	T _g [°C]		592
C ₁	0.00644	742752	250	0.00			T ₁₀ ^{13.0} [°C]		592
C ₂	0.02222	284402					T ₁₀ ^{7.6} [°C]		746
C ₃	107.297	751					c _p [J/(g⋅K)]		0.687
							λ [W/(m∗K)]		0.795
Constan	ts of Dis	spersion	Color	Code					
dn/dT			λ_{80}/λ_5		33	8/29	ρ [g/cm³]		3.19
Do	1.86e-0	7					E[10 ³ N/mm	²]	73
D1	1.29e-0	8	Remar	ks			μ		0.252
D2	-1.87e-	11					K[10 ⁻⁶ mm ² /	N]	2.62
E ₀	5.25e-0	7					HK _{0.1/20}		530
E1	5.46e-1	0	Relativ	/e price			HG		2
λτκ[μm]	0.182								
							В		1
Tempera	ature Co	efficients	s of Refr	active I	ndex				
	∆n _{re}	"/∆T[10 ⁻⁶ /	/K]	Δn_{ab}	s/∆T[10	•6/K]	CR		2
[°C]	1060.0	e	g	1060.0	е	g	FR		1
-40/-20	1.7	2.4	3	-0.4	0.2	0.8	SR		3.3
+20/+40	1.8	2.5	3.2	0.4	1.2	1.8	AR		1.2
+60/+80	1.9	2.7	3.5	0.9	1.7	2.4	PR		2
As of 09/	17/2001/	Subject	to chang	е			SCHOTT (Optica	I Glass

6.8 SBAL11 (OHara)

S-BAL11

573578 575575

Refractive Index	n _d	1.57250 1.572501	Abbe Number $\nu_{\rm d}$	57.8 57.74	Dispersion NFNC	0.00991 0.009915
Refractive Index	n _e	1.574864	Abbe Number ν_{Θ}	57.47	Dispersion NF′ – NC′	0.010002

Refractive Indices					
	λ (μm)				
N2325	2.32542	1.54394			
N1970	1.97009	1.54922			
N1530	1.52958	1.55486			
N1129	1.12864	1.55978			
nt	1.01398	1.56139			
ns	0.85211	1.56417			
n _A ′	0.76819	1.56605			
nr	0.70652	1.56778			
nc	0.65627	1.56949			
n _C ′	0.64385	1.56997			
n _{He-Ne}	0.6328	1.57042			
n _D	0.58929	1.57241			
n _d	0.58756	1.57250			
ne	0.54607	1.57486			
n _F	0.48613	1.57940			
n _F ′	0.47999	1.57997			
n _{He} -Cd	0.44157	1.58410			
n _g	0.435835	1.58481			
nh	0.404656	1.58932			
ni	0.365015	1.59701			

Deviation of Relative Partial Dispersions $\varDelta \theta$ from "Normal" -0.0004

Constants of Dispersion Formula

Other Properties

Bubble Quality Group B

Specific Gravity

Remarks

0.0006

-0.0029

-0.0024 -0.0113

8.21314256•10-1

6.12586478•10-1

1.24859637

Δθc,t

Δθc,A $\Delta \theta_{\rm g,d}$

 $\varDelta \theta_{\rm g,F}$

 $\Delta \theta_{i,g}$

A1

 A_2

Aз

B1

B₂

Bз

spersions	Relative Parti	al Dispersions
0.008103	θc,t	0.8172
0.003436	θc,A'	0.3465
0.003012	θd,C	0.3038
0.005375	θe,C	0.5421
0.012313	$\theta_{g,d}$	1.2419
0.005410	θg,F	0.5456
0.004502	$\theta_{h,g}$	0.4541
0.012197	$\theta_{i,g}$	1.2302
0.008582	θ´c',t	0.8580
0.004896	θ _{e,C} '	0.4895
0.005106	θ _{F',e}	0.5105
0.017041	θí,F	1.7038
	opersions 0.008103 0.003436 0.003012 0.005375 0.012313 0.005410 0.004502 0.012197 0.008582 0.004896 0.005106	Persions Relative Parti 0.008103 $\theta_{C,t}$ 0.003436 $\theta_{C,A'}$ 0.005375 $\theta_{d,C}$ 0.005375 $\theta_{g,d}$ 0.005410 $\theta_{g,F}$ 0.004502 $\theta_{h,g}$ 0.012197 $\theta_{l,g}$ 0.004502 $\theta_{c,c'}$ 0.004502 $\theta_{c,c'}$ 0.004502 $\theta_{c,c'}$ 0.004502 $\theta_{c,c'}$ 0.004502 $\theta_{c,c'}$ 0.005106 $\theta_{c,c'}$ 0.005106 $\theta_{c,F'}$

Therr	nal P	ropertie	es
Strain Point	StP	(°C)	498
Annealing Point	AP	(°C)	534
Tianaformation Temperatu	юTg	(°C)	548
Yield Point	At	(°C)	593
Softening Point	SP	(°C)	670
Expansion Coefficients	(-30~	+70°C)	66
α (10-7/C)	(+100~	·+300°C)	80
Thermal Conductiv	<i>i</i> nyk (W/m•K)	0.974

Mechanical Properties						
	Young's Modulus E (10 ⁸ N/m ²)	819				
	Rigidity Modulus G (10 ⁸ N/m ²)	331				
	Poisson's Ratio Ø	0.237				
	Knoop Hardness Hk	590[6]				
	Abrasion Aa	109				
	Photoelastic Constant B	2.42				

3.5	1436	6131•10 ⁻³			
1.7	9762	2375•10 ⁻²			
1.3	3456	670•10 ²		Chemical Properti	es
				Water Resistance (Powder) Group RW (P)	1
er P	roper	ties	ΙI	Acid Resistance (Powder) Group RA (P)	1
iroup	В			Weathering Resistance (Surface) Group $W(S)$	2~3
/	d	3.02		Acid Resistance (Surface) Group SR	2.0
			ΙT	Phosphate Resistance PR	1.0

(nm/cm/105Pa)

	Temperature Coefficients of Refractive Index							
Range of Temp	perature		dr	n∕dt rela	ative (1	0 ^{−6} /°C)	
(°C)		t	C	He-Ne	D	е	F	g
-40 ~	-20	3.0	3.4	3.5	3.6	3.7	4.0	4.3
–20 ~	0	3.1	3.5	3.5	3.7	3.8	4.1	4.4
0~	20	3.2	3.6	3.6	3.7	3.9	4.2	4.6
20 ~	40	3.2	3.6	3.7	3.8	4.0	4.3	4.7
40 ~	60	3.3	3.7	3.7	3.9	4.0	4.4	4.8
60 ~	80	3.3	3.8	3.8	3.9	4.1	4.5	4.9

Internal Trar	nsmittance
λ (nm)	τ 10mm
280	
290	
300	
310	
320	0.01
330	0.24
340	0.61
350	0.84
360	0.932
370	0.967
380	0.982
390	0.989
400	0.993
420	0.995
440	0.996
460	0.997
480	0.998
500	0.998
550	0.999
600	0.999
650	0.998
700	0.999
800	0.999
900	0.999
1000	0.998
1200	0.998
1400	0.989
1600	0.995
1800	0.988
2000	0.979
2200	0.929
2400	0.89

Coloring

λ80/λ5

35/32

OHARA 02-06, 428

6.9 BSM51Y (OHara)

BSM 51Y

603606 605604

0.8350

0.3509

0.3052

1.2355

0.5407

1.2099 0.8766 0.4911 0.5089

1.6804

Refractive Index	n _d	1.60311 1.603109	Abbe Number ν_d	60.65 60.65	Dispersion N _F —N _C 0.00995 0.009944
Refractive Index	n _e	1.605481	Abbe Number ν_{e}	60.40	Dispersion NF'-NC'0.010024

	Refractive Indi	ces
	λ (μm)	
N 2325	2.32542	1.57281
N 1970	1.97009	1.57865
N 1530	1.52958	1.58482
N1129	1.12864	1.59008
nt	1.01398	1.59177
ns	0.85211	1.59465
na′	0.76819	1.59658
n _r	0.70652	1.59834
nc	0.65627	1.60007
n _C ′	0.64385	1.60056
n _{He-Ne}	0.6328	1.60101
n _D	0.58929	1.60302
n _d	0.58756	1.60311
n _e	0.54607	1.60548
n _F	0.48613	1.61002
NF'	0.47999	1.61058
NHe-Cd	0.44157	1.61468
ng	0.435835	1.61539
nh	0.404656	1.61985
n _i	0.365015	1.62743
N334	0.334148	1.63557
N326	0.326106	1.63815

Partial Dispersions				
nc–nt	0.008303			
nc-na'	0.003489			
nd–nc	0.003035			
ne-nc	0.005407			
n _g _n _d	0.012286			
n _g _n _F	0.005377			
n _h -n _g	0.004454			
n⊢ng	0.012031			
n _{c'} –n _t	0.008787			
n _e -n _C ′	0.004923			
nr′–ne	0.005101			
n⊢nF′	0.016844			

Therma	al Pro	perties	:
Strain Point	StP	(°C)	538
Annealing Point	AP	(°C)	568
Transformation Temperature	Τg	(°C)	585
Yield Point	At	(°C)	617
Softening Point	SP	(°C)	684
Expansion Coefficients (-30~	+70°C)	63
α (10 ⁻⁷ /°C) (+1	00~+	-300°C)	77
Thermal Conductivity	(W/	m•K)	0.961

Colo	ring
λ 80 / λ 5	32/29

Relative Partial Dispersions

θC,t

θC,A

 $\theta_{d,C}$

 $heta_{e,C}$ $heta_{g,d}$

 $\theta_{g,F}$

 $\theta_{\rm h,g}$

θi,g θ´C',t θ´e,C' θ´F',e

θ́i,F

Deviation of Relative Partial Dispersions $\Delta \theta$ from "Normal"				
$\Delta \theta_{C,t}$	0.0037			
<i>Δθ</i> c,Α′	0.0015			
$\Delta \theta_{g,d}$	-0.0033			
$\Delta \theta_{g,F}$	-0.0026			
$\Delta \theta_{i,g}$	-0.0073			

Constants of Dispersion Formula 🚿1			
A ₁	1.22393171		
A ₂	3.06482383•10 ⁻¹		
A3	8.23950901•10 ⁻¹		
B1	6.49521083•10 ⁻³		
B ₂	2.08194161•10 ⁻²		
B3	7.95168951•10 ¹		

Other P	ropert	ies
Bubble Quality Group	В	
Specific Gravity	d	3.36
Remarks		

Mechan	ical Properti	es
Young's Modulus E	(10 ⁸ N/m ²)	901
Rigidity Modulus G	(10 ⁸ N/m ²)	359
Poisson's Ratio	σ	0.256
Knoop Hardness	Hk	570[6]
Abrasion	Aa	117
Photoelastic Consta (nm/cm/10 ⁵ Pa	nt β .)	

*1 By using these constants, refractive indices for any wavelength between 326 and 1129nm can be calculated. When calculateing refractive indices for any wavelength between 1129 and 2325nm, please refer to us.

Chemical Properties	1
Water Resistance (Powder) Group RW (P)	2
Acid Resistance (Powder) Group RA(P)	4
Weathering Resistance (Surface) Group $W(s)$	3
Acid Resistance (Surface) Group SR	51.2
Phosphate Resistance PR	2.2

Temperature Coefficients of Refractive Index								
Range of Temperature			dn / dt	relative	(10-	6/℃)		
(°C)	t	C	He-Ne	D	е	F	g	i
-40 ~ -20	2.5	2.8	2.8	2.9	3.1	3.3	3.6	4.3
-20~ 0	2.6	2.9	2.9	3.0	3.1	3.4	3.7	4.4
0~ 20	2.6	2.9	2.9	3.1	3.2	3.5	3.8	4.6
20~ 40	2.6	3.0	3.0	3.1	3.3	3.6	3.9	4.7
40~ 60	2.7	3.0	3.0	3.2	3.3	3.6	4.0	4.8
60~ 80	2.7	3.1	3.1	3.3	3.4	3.7	4.1	4.9

Internal Transmittance				
λ (nm)	τ 10mm	τ 25mm		
280	280			
290	0.03			
300	0.33	0.06		
310	0.69	0.40		
320	0.88	0.72		
330	0.950	0.87		
340	0.977	0.944		
350	0.988	0.970		
360	0.993	0.983		
365	0.995	0.987		
370	0.996	0.990		
380	0.997	0.993		
390	0.998	0.995		
400	0.998	0.996		
420	0.998	0.996		
440	0.998	0.996		
460	0.999	0.997		
480	0.999	0.998		
500	0.999	0.998		
550	0.999	0.998		
600	0.999	0.998		
650	0.999	0.998		
700	0.999	0.998		
800	0.999	0.998		
900	0.999	0.997		
1000	0.997	0.993		
1200	0.997	0.993		
1400	0.985	0.963		
1600	0.992	0.980		
1800	0.983	0.959		
2000	0.967	0.920		
2200	0.89	0.74		
2400	0.78	0.54		

OHARA 02-06, 317

6.10 PBL26Y (OHara)

			PBL26	Y	!	567428 570426
Refractive Index	Nd	1.56732 1.567322	Abbe Number ソd	42.8 42.86	Dispersion NF-NC	0.01324 0.013238
Refractive Index	n _e	1.570466	Abbe Number \mathcal{V}_{Θ}	42.58	Dispersion NF' - NC	0.013399

Refractive Indices					
	λ (μm)				
N2325	2.32542	1.53658			
N 1970	1.97009	1.54138			
N 1530	1.52958	1.54668			
N 1129	1.12864	1.55170			
nt	1.01398	1.55348			
ns	0.85211	1.55673			
na′	0.76819	1.55904			
nr	0.70652	1.56120			
nc	0.65627	1.56339			
nc′	0.64385	1.56401			
NHe-Ne	0.6328	1.56459			
n _D	0.58929	1.56721			
n _d	0.58756	1.56732			
n _e	0.54607	1.57047			
NF	0.48613	1.57663			
n _F ′	0.47999	1.57741			
n _{He-Cd}	0.44157	1.58317			
ng	0.435835	1.58418			
n _h	0.404656	1.59065			
ni	0.365015	1.60217			
N 334	0.334148	1.61543			
N 326	0.326106	1.61986			

Partial Dis	persions	Relative Parti	al Dispersions
n _C –n _t	0.009910	θc,t	0.7486
nc-na'	0.004353	θc,A'	0.3288
n₄−nc	0.003931	θd,C	0.2969
n _e –n _C	0.007075	$\theta_{e,C}$	0.5344
ng-nd	0.016861	$\theta_{g,d}$	1.2737
n _g _n _F	0.007554	$\theta_{g,F}$	0.5706
n _h -n _g	0.006471	$\theta_{h,g}$	0.4888
n _i _n _g	0.017986	$\theta_{i,g}$	1.3587
nc'-nt	0.010529	θ´C´,t	0.7858
n₀—nc′	0.006456	θ´e,C΄	0.4818
n _F ′−n _e	0.006943	θ´ϝ΄,e	0.5182
ni–nf	0.024760	θí,F	1.8479

The	rmal Pro	perties	1
Strain Point	StP	(°C)	380
Annealing Point	AP	(°C)	418
Transformation Temperation	ature Tg	(°C)	432
Yield Point	At	(°C)	471
Softening Point	SP	(°C)	591
Expansion Coefficien	its (−30~	+70°C)	89
α (10 ^{−7} /℃)	(+100~+	-300°C)	100
Thermal Conductivi	byk(W/	′m∙K)	0.912

Coloring			
λ 80 / λ 5	33/31		

Deviation of Relative Partial Dispersions & from "Normal"			
$\Delta \theta_{C,t}$	0.0008		
$\Delta \theta_{C,A'}$	0.0010		
$\Delta \theta_{g,d}$	-0.0020		
$\Delta \theta_{g,F}$	-0.0015		
$\Delta \theta_{i,g}$	-0.0074		

Constants of Dispersion Formula 1971		
A1	1.29471773	
A ₂	1.08880981+10-1	
A3	2.20322964•10-1	
B₁	9.86579479•10 ⁻³	
B ₂	4.77568828•10 ⁻²	
B ₃	2.88509863•10 ¹	

Other Properties				
Bubble Quality Group	В			
Specific Gravity	d	3.10		
Remarks				

Mechanic	al Properti	8 S
Young's Modulus E	(10 ⁸ N/m ²)	589
Rigidity Modulus G	(10 ⁸ N/m ²)	242
Poisson's Ratio	σ	0.220
Knoop Hardness	Hk	420[4]
Abrasion	Aa	136
Photoelastic Constant	ιβ	
(nm/cm/105Pa)		

*1 By using these constants, refractive indices for any wavelength between 326 and 1129nm can be calculated. When calculateing refractive indices for any wavelength between 1129 and 2325nm, please refer to us.

Chemical Properties	
Water Resistance (Powder) Group RW (P)	2
Acid Resistance (Powder) Group RA (P)	1
Weathering Resistance (Surface) Group $W(S)$	1
Acid Resistance (Surface) Group SR	1.0
Phosphate Resistance PR	2.0

_										
	Temperature Coefficients of Refractive Index									
Ra	nge of Te	mperature			dn / dt	relative	(10-	°/℃)		
	3°))	t	C	He-Ne	D	е	F	g	i
-	-40 ~	-20	0.9	1.5	1.5	1.7	2.0	2.5	3.0	4.9
-	-20 ~	0	1.0	1.6	1.7	1.8	2.1	2.6	3.2	5.1
	0~	20	1.1	1.7	1.8	2.0	2.2	2.8	3.4	5.4
	20 ~	40	1.2	1.9	1.9	2.1	2.4	3.0	3.6	5.7
	40 ~	60	1.3	2.0	2.0	2.2	2.5	3.1	3.8	5.9
	60 ~	80	1.4	2.1	2.1	2.4	2.6	3.3	4.0	6.2

Internal Transmittance				
λ (nm)	τ 10mm	au 25mm		
280				
290				
300				
310	0.04			
320	0.47	0.15		
330	0.84	0.65		
340	0.957	0.89		
350	0.985	0.963		
360	0.994	0.986		
365	0.996	0.989		
370	0.997	0.992		
380	0.998	0.995		
390	0.998	0.996		
400	0.998	0.996		
420	0.999	0.997		
440	0.999	0.997		
460	0.999	0.998		
480	0.999	0.998		
500	0.999	0.998		
550	0.999	0.998		
600	0.999	0.998		
650	0.999	0.998		
700	0.999	0.999		
800	0.999	0.999		
900	0.999	0.997		
1000	0.998	0.994		
1200	0.997	0.993		
1400	0.996	0.990		
1600	0.994	0.984		
1800	0.979	0.948		
2000	0.950	0.87		
2200	0.89	0.76		
2400	0.85	0.67		
		0.00		

532490

6.11 PBL6Y (OHara)

			PBL 6	Y	532490 534487
Refractive Index	nd	1.53172 1.531717	Abbe Number ソd	49.0 48.95	Dispersion NF-NC 0.01086 0.010862
Refractive Index	n _e	1.534301	Abbe Number \mathcal{V}_{Θ}	48.67	Dispersion NF - NC 0.010977

Refractive Indices				
	λ (μm)			
N2325	2.32542	1.50343		
N 1970	1.97009	1.50833		
N 1530	1.52958	1.51361		
N 1129	1.12864	1.51837		
nt	1.01398	1.51998		
ns	0.85211	1.52282		
Π <u>Α</u> ′	0.76819	1.52480		
nr	0.70652	1.52663		
nc	0.65627	1.52846		
nc′	0.64385	1.52897		
NHe-Ne	0.6328	1.52946		
n _D	0.58929	1.53162		
n _d	0.58756	1.53172		
n _e	0.54607	1.53430		
NF	0.48613	1.53932		
n _F ′	0.47999	1.53995		
N _{He} -Cd	0.44157	1.54459		
ng	0.435835	1.54540		
n _h	0.404656	1.55056		
ni	0.365015	1.55959		
N 334	0.334148	1.56978		
N326	0.326106	1.57312		

Partial Dispersions			Relative Partial Dispersio				
n _C –n _t	0.008482	θο),t	0.7809			
nc-na'	0.003660	θο	;,A'	0.3370			
n₄−nc	0.003258	θ_{d}	,c	0.2999			
n _e -n _C	0.005842	θ_{e}	,c	0.5378			
ng-nd	0.013686	θ_{g}	,d	1.2600			
n _g _n _F	0.006082	θ_g	,F	0.5599			
n _h -n _g	0.005153	θ_{h}	.g	0.4744			
n _i –n _g	0.014190	θ_{i_i}	g	1.3064			
nc'-nt	0.008998	θ	C',t	0.8197			
n₀–nc′	0.005326	θ	e,C'	0.4852			
n _F -n _e	0.005651	θ	Fí,e	0.5148			
ni–nf'	0.019641	θí	,F'	1.7893			

Therr	nal Pro	perties	4
Strain Point	StP	(°C)	398
Annealing Point	AP	(°C)	436
Transformation Temperate	ure Tg	(°C)	453
Yield Point	At	(°C)	501
Softening Point	SP	(°C)	637
Expansion Coefficients	s (−30~·	+70°C)	83
α (10 ⁻⁷ /°C) (·	+100~+	300°C)	90
Thermal Conductivity	- k(W/	m•K)	1.016

Colo	ring
l 80 / λ 5	32/30

Deviation of Relative Partial Dispersions & from "Normal"						
$\Delta \theta_{C,t}$	0.0046					
$\Delta \theta_{C,A'}$	0.0018					
$\Delta \theta_{g,d}$	-0.0031					
$\Delta \theta_{g,F}$	-0.0024					
$\Delta \theta_{i,g}$	-0.0087					

Constants of Dispersion Formula ※1						
A1	1.22310794					
A ₂	8.11217929•10 ⁻²					
A ₃	3.21400939•10 ⁻¹					
B1	8.97805333•10 ⁻³					
B ₂	4.45756957•10 ⁻²					
B ₃	4.05962247•10 ¹					
A ₃ B1 B2 B3	3.21400939•10 ⁻¹ 8.97805333•10 ⁻³ 4.45756957•10 ⁻² 4.05962247•10 ¹					

Other Properties							
Bubble Quality Group	В	В					
Specific Gravity	d	2.79					
Remarks							

Mechani	cal Properti	es
Young's Modulus E	(10 ⁸ N/m ²)	605
Rigidity Modulus G	(10 ⁸ N/m ²)	251
Poisson's Ratio	σ	0.205
Knoop Hardness	Hk	450[5]
Abrasion	Aa	113
Photoelastic Constan	tβ	3.07
(nm/cm/10 ⁵ Pa))	

%1 By using these constants, refractive indices for any wavelength between 326 and 1129nm can be calculated. When calculateing refractive indices for any wavelength between 1129 and 2325nm, please refer to us.

Chemical Properties						
Water Resistance (Powder) Group RW (P)	2					
Acid Resistance (Powder) Group RA (P)	1					
Weathering Resistance (Surface) Group $W(S)$	1					
Acid Resistance (Surface) Group SR	1.0					
Phosphate Resistance PR	1.0					

	Temperature Coefficients of Refractive Index								
Range of Ten	nperature			dn / dt	relative	(10-	6/℃)		
(°C))	t	C	He-Ne	D	е	F	g	i
–40 ~	-20	1.9	2.3	2.3	2.4	2.6	3.0	3.4	4.7
–20 ~	0	1.9	2.4	2.4	2.5	2.7	3.1	3.6	4.9
0 ~	20	2.0	2.5	2.5	2.6	2.8	3.3	3.7	5.1
20 ~	40	2.1	2.6	2.6	2.7	2.9	3.4	3.9	5.3
40 ~	60	2.1	2.7	2.7	2.9	3.1	3.5	4.0	5.6
60 ~	80	2.2	2.8	2.8	3.0	3.2	3.7	4.2	5.8

Internal Transmittance					
λ (nm)	τ 10mm	au 25mm			
280					
290					
300					
310	0.33	0.06			
320	0.79	0.55			
330	0.947	0.87			
340	0.985	0.963			
350	0.994	0.986			
360	0.997	0.993			
365	0.998	0.994			
370	0.998	0.995			
380	0.998	0.996			
390	0.998	0.996			
400	0.999	0.997			
420	0.999	0.998			
440	0.999	0.998			
460	0.999	0.998			
480	0.999	0.998			
500	0.999	0.998			
550	0.999	0.998			
600	0.999	0.999			
650	0.999	0.998			
700	0.999	0.999			
800	0.999	0.999			
900	0.999	0.998			
1000	0.998	0.996			
1200	0.997	0.993			
1400	0.996	0.990			
1600	0.993	0.983			
1800	0.973	0.934			
2000	0.933	0.84			
2200	0.86	0.69			
2400	0.81	0.59			

OHARA 02-06,

6.12 N-BK7 (Schott)

SCHOTT			OPTICAL GLASS				BK			
										
N-BK/	-BK/			.5168		^{Ud} = 64.	17	nF - nc	= 0.00	8054
51/642			$n_e = 1$.518/2		$v_e = 63.$	96	n F' - n C'	= 0.00	8110
			let a second		144		_	Deleting De		
							Relative Pa	rtial		
	∧ [nm]	1 49021	2500	0.67	<u>imj</u>	0.36	Щ	P	0.309	98
<u>N 2325.4</u>	1070 1	1.40921	2325	0.07		0.56	-	Por	0.56	12
n 1970.1	1529.6	1 50091	1970	0.933		0.840	\neg	P d c	0.30	76
n 1529.6	1060.0	1.50669	1530	0.992		0.980	\neg	Pad	0.238	36
n 1060.0	2024.0	1.50731	1060	0.999		0.997	\neg	Par	0.534	49
n.	852.1	1.50980	700	0.998		0.996	\neg	Pib	0.748	33
n,	706.5	1.51289	660	0.998		0.994		,	1	
nc	656.3	1.51432	620	0.998		0.994	\neg	P' s,t	0.307	76
n c'	643.8	1.51472	580	0.998		0.995		P' c'.s	0.60	62
n 632.8	632.8	1.51509	546	0.998		0.996		P' d,C'	0.256	66
n D	589.3	1.51673	500	0.998		0.994		P' e,d	0.23	70
n d	587.6	1.51680	460	0.997		0.993		P' g,F'	0.47	54
n e	546.1	1.51872	436	0.997		0.992		P' i,h	0.743	32
n F	486.1	1.52238	420	0.997		0.993				
n _{F'}	480.0	1.52283	405	0.997		0.993				
n "	435.8	1.52668	400	0.997	- í	0.992		Deviation of	of Rela	tive
n _h	404.7	1.53024	390	0.996	1	0.989		Partial Disp	persion	ns ∆P
ni	365.0	1.53627	380	0.993	- í	0.983		from the "N	ormal	Line"
n 334.1	334.1	1.54272	370	0.991	1	0.977		Δ P c,t	0.02	16
n 312.6	312.6	1.54862	365	0.988	- í	0.971		Δ P c,s	0.00	37
n 296.7	296.7		350	0.967		0.920		Δ P F,e	-0.00	09
n 280.4	280.4		334	0.905	Í	0.780		ΔPg,F	-0.00	09
n 248.3	248.3		320	0.770		0.520		Δ Ρ i,g	0.003	35
			310	0.574		0.25				
Constan	ts of Dis	spersion	300	0.29		0.05				
Formula			290	0.06		0.00		Other Prop	erties	
B ₁	1.03961	1212	280	0.00		0.00		α_30/+70°c [10	-6/ K]	7.1
B ₂	0.23179	92344	270	0.00		0.00		α+20/+300°c[1	0 ⁻⁶ /K]	8.3
B ₃	1.01046	6945	260	0.00		0.00		T _g [°C]		557
C ₁	0.00600	069867	250	0.00				T ₁₀ ^{13.0} [°C]		557
C2	0.02001	179144						T ₁₀ ^{7.6} [°C]		719
C ₃	103.560	0653						c _p [J/(g⋅K)]		0.858
								λ [W/(m ∗ K)]		1.114
Constan	ts of Dis	spersion	Color C	ode		00/00	_	o[<i>a</i> / <i>a</i> ³]		2.54
an/d I	4.00.0		A80/A5			33/29		p[g/cm ^s]	21	2.51
D ₀	1.86e-0	6	Deres				_	E[10 ³ N/mm	1"]	0.206
D1	1.31e-0	8	Remark	(S				μ		0.200
D ₂	-1.37e-	7						K[10°mm²	[אי	2.77
E ₀	4.34e-0	/	Detection				_	HK0.1/20		2
E ₁	0.2/e-1	U	Relative	e price			4	no		3
ιντκ [μ m]	0.17							P		0
Tomas	ture C-	officients	of Pafe	ative les	day			B		5
rempera	ature CO	JATIO 6/		An .		0.6/1/1	_	CP		2
IPC1	1060 C						_	ED		0
40/ 20	2.4	20	g 1	0.2	e	g		SP		1
+20/+40	2.4	2.9	3.5	1.1	1.6	1.2	_			2
+60/+90	2.4	31	3.5	1.1	2.4	2.1	_	PR		2.3
Ac cf 00/	2.3	Subject t	3.1	1.0	2.1	2.1		CLICIT	Ontin	
AS OT 09/	03/2001/	Subject t	o change					SCHOT	optica	Glass

6.13 N-SSK5 (Schott)

SCHOTT	1		OPTIC	AL GLASS			SSK		
NISSK	5			05044	-				
659500	271		$n_{d} = 1$.65844	11-	= 50.88	nF - nc	= 0.01	2940
030303			n _e – i	.00132	0e	- 50.55	n F' - n C'	- 0.01	5075
Refractiv	ve Indice	es	Interna	l Transmitta	ance	τi	Relative Par	rtial	
	λ [nm]		λ [nm]	τ _i [10mm]	τ_i	[25mm]	Dispersion		
n 2325.4	2325.4	1.62581	2500	0.73	0.4	5	P s,t	0.259	92
n 1970.1	1970.1	1.63128	2325	0.85	0.6	6	P _{C,5}	0.518	31
n 1529.6	1529.6	1.63720	1970	0.963	0.9	10	P d,C	0.300)3
n 1060.0	1060.0	1.64371	1530	0.992	0.9	080	P _{e,d}	0.238	30
n .	2024.0	1.64450	1060	0.996	0.9	90	P _{g,F}	0.557	/5
n s	852.1	1.64785	700	0.997	0.9	93	P i,h	0.815	92
n _r	706.5	1.65237	660	0.997	0.9	92		0.050	
n c	656.3	1.65455	620	0.997	0.9	92	P's,t	0.250	20
n c'	643.8	1.65517	580	0.997	0.9	93	P'C',s	0.55	20 12
n 632.8	632.8	1.65574	546	0.996	0.9	90	P' d,C'	0.230	12
<u>n</u> _D	589.3	1.65833	500	0.993	0.9	82	P'e,d	0.23	14
n d	587.6	1.65844	460	0.987	0.9	68	P' g,F'	0.494	14
n e	546.1	1.66152	436	0.982	0.9	156	P'i,h	0.810	18
n _F	486.1	1.66749	420	0.976	0.9	40			
n _{F'}	480.0	1.66824	405	0.963	0.9	010			
n g	435.8	1.67471	400	0.959	0.9	000	Deviation of	f Rela	tive
<u>n</u> h	404.7	1.68079	390	0.941	0.8	60	Partial Disp	ersio	ns ∆P
n i	365.0	1.69139	300	0.896	0.7	6U	from the "N	ormai	Line
n 334.1	334.1		3/0	0.804	0.5	080		-0.00	24
n 312.6	312.0		305	0.727	0.4	150		0.00	34
n 296.7	290.7		330	0.336	0.0	000		0.000	07
n 280.4	200.4		320	0.017	0.0		ΔPg,F	-0.00	81
n 248.3	240.5	<u> </u>	210	0.000	0.0	00	Δ F i,g	-0.00	01
Constan	te of Di	norcion	200	0.000	0.0			J	
Formula		spersion	290	0.00	0.0		Other Prope	ortioe	
P.	1 59222	0659	280	0.00	0.0			6/K1	6.8
	0 10352	00774	270	0.00	0.0		C+20/+2000c[10)-6/K1	8
B ₂	1 05174	016	260	0.00	0.0	0	T_[°C]	, ,,,,]	645
D3	0.00920	284626	250	0.00	10.0		T ₄₀ ^{13.0} [°C]		637
	0.04235	30072	200	0.00	\vdash		T ₄₀ ^{7.6} [°C]		751
C.	106.927	374	í		\vdash		$c_{a}[J/(q,K)]$		0.574
03	100.021	014		J			λ[W/(m·K)]		
Constan	ts of Dis	spersion	Color C	Code					
dn/dT			280/25		38	/34	ρ[g/cm ³]		3.71
Do	7.29e-0	7	1.000.700				E[10 ³ N/mm ³	2]	88
D ₁	1.17e-0	8	Remar	ks	_		μ		0.278
D ₂	-1.5e-1	1					K[10-6mm2/I	N]	1.9
E	6.08e-0	7	·				HK _{0.1/20}		590
E1	7.66e-1	0	Relativ	e price			HG		5
λτκ[μm]	0.189								
	,						В		1
Tempera	ature Co	efficients	of Refra	active Index	:				ĺ
	∆n _{re}	J∆T[10-6	K]	$\Delta n_{abs} / \Delta T$	[10-	⁶ /K]	CR		2
[°C]	1060.0	e	g 1	060.0 e		g	FR		3
-40/-20	2.2	3	3.9	0 0.	8	1.6	SR		52.2
+20/+40	2.2	3.2	4.2	0.8 1.	8	2.7	AR		2.2
+60/+80	2.4	3.5	4.5	1.2 2.	3	3.4	PR		3.2
As of 09/	03/2001/	Subject	to change				SCHOTT C	Optica	I Glass

6.14 N-LAK8 (Schott)

SCHOTT	г		OPTIC	AL GLASS			LAK		
	Q			740	- 11	50.00		0.04	2045
712520	275		$n_d = 1$.713	1	= 53.83	nF - nc	-0.01	3245
/15550			n _e –		~	s = 00.01	n F' - n C'	- 0.01	0000
Refractiv	ve Indice	es	Interna	l Transmitt	anc	eτ _i	Relative Par	rtial	
	λ [nm]		λ [nm]	τ _i [10mm]	tι	[25mm]	Dispersion		
n 2325.4	2325.4	1.67294	2500	0.40	0.	10	P _{s,t}	0.286	61
n 1970.1	1970.1	1.68075	2325	0.71	0.4	42	P _{C,5}	0.540)8
n 1529.6	1529.6	1.68890	1970	0.950	0.	880	P d,C	0.304	12
n 1060.0	1060.0	1.69710	1530	0.992	0.	979	P e,d	0.238	33
n .	2024.0	1.69802	1060	0.998	0.	994	P _{g,F}	0.54	50
n s	852.1	1.70181	700	0.998	0.	996	P i,h	0.776	64
n _r	706.5	1.70668	660	0.998	0.	995		0.000	
n c	656.3	1.70897	620	0.998	0.	994	P's,t	0.28	12
n c'	643.8	1.70962	580	0.998	0.	994	P'C',s	0.56	10
n 632.8	632.8	1.71022	546	0.998	0.	995	P' d,C'	0.25	22
<u>n</u> _D	589.3	1.71289	500	0.998	0.	994	P'e,d	0.230))))
n d	587.6	1.71300	460	0.995	0.	987	P' g,F'	0.48	00
n e	546.1	1.71616	436	0.992	0.	979	P' i,h	0.76	78
n _F	486.1	1.72222	420	0.988	0.	970		<u> </u>	
n _{F'}	480.0	1.72297	405	0.981	0.	952			
n g	435.8	1.72944	400	0.977	0.	943	Deviation of	fRela	tive
n _h	404.7	1.73545	390	0.965	0.	915	Partial Disp	ersio	IS AP
n i	365.0	1.74573	300	0.946	0.0	870	from the "N	ormai	Line
n 334.1	334.1	1.75687	3/0	0.905	0.	780		0.020	24
n 312.6	312.0		305	0.877	0.	120	APC,s	0.012	26
n 296.7	290.7		330	0.739	0.4	470	APF,e	-0.00	83
n 280.4	200.4		334	0.309	0.	040	AP _{g,F}	-0.00	28
n 248.3	240.5	<u> </u>	210	0.270	0.0	040	Δ F i,g	-0.04	20
Constan	te of Dir	norcion	200	0.137	0.0			I	
Formula		spersion	290	0.04	0.0	00	Other Prope	rtiae	
P.	1 33183	167	280	0.00	0.0	00		6/K1	5.6
	0.54662	23206	270	0.00	0.0	00	((+20/+2000c[10)-6/ K 1	6.7
B ₂	1 1908/	015	260	0.00	0.0	00	T_[°C]		643
D ₃	0.00620	023871	250	0.00	10.		T ₄₀ ^{13.0} [°C]		635
	0.00020	165439	200	0.00	┢		T ₄₀ ^{7.6} [°C]		717
C.	82 5827	736	1		┢		c_[J/(q,K)]		0.62
03	02.0021	100]			λ[W/(m·K)]		0.84
Constan	ts of Dis	spersion	Color (Code					
dn/dT			280/25		37	//30	ρ[g/cm ³]		3.75
Do	4.1e-06		1				E[10 ³ N/mm ³	2]	115
D1	1.25e-0	8	Remar	ks			μ		0.289
D ₂	-1.6e-1	1			Τ		K[10-6mm2/I	N]	1.81
E	4.3e-07		·		·		HK _{0.1/20}	-	740
E1	6.29e-1	0	Relativ	e price			HG		2
λτκ[μm]	0.213				Τ				
							В		0
Tempera	ature Co	efficients	s of Refr	active Inde	(
	Δn _{re}	J∆T[10-6	/K]	$\Delta n_{abs} / \Delta$	[10	•6/K]	CR		3
[°C]	1060.0	e	g 1	060.0)	g	FR		2
-40/-20	4	4.7	5.4	1.7 2	.4	3	SR		52.3
+20/+40	4.1	5	5.8	2.6 3	5	4.3	AR		1
+60/+80	4.3	5.2	6.2	3.1 4	.1	5	PR		3.3
As of 09/	03/2001	Subject	to change				SCHOTT C)ptica	Glass

6.15 SF5 (Schott)

SCHOTT			OPTIC	AL GLASS			SF		
SF5			n d = 1	.6727	υ	d = 32.21	n F - n C	= 0.02	0885
673322	2.407		n _e = 1	.67764	υ	∍ = 31.97	n _{F'} - n _{C'}	= 0.02	1195
			1 (
Refracti	ve Indice	es	Interna	I Transmit	anc	eτ _i	Relative Pa	rtial	
	<u>λ [nm]</u>		λ [nm]	τ _i [10mm]	$ \tau_i $	[25mm]	Dispersion	0.044	
n 2325.4	2325.4	1.63289	2500	0.85	0.	66	P _{s,t}	0.219	94
n 1970.1	1970.1	1.63785	2325	0.89	0.	74	Р с, 5	0.477	15
n 1529.6	1529.6	1.64359	1970	0.959	0.	900	P d,C	0.291	15
n 1060.0	1060.0	1.65104	1530	0.995	0.	987	P _{e,d}	0.236	56
n t	2024.0	1.65206	1060	0.998	0.	996	P _{g,F}	0.591	19
n s	852.1	1.65664	700	0.998	0.	996	P i,h	0.951	13
n r	706.5	1.66327	660	0.998	0.	995			
nc	656.3	1.66661	620	0.998	0.	995	P' s,t	0.216	62
n c'	643.8	1.66756	580	0.998	0.	996	P' c',s	0.515	53
n 632.8	632.8	1.66846	546	0.998	0.	996	P' d,C'	0.242	23
n D	589.3	1.67252	500	0.997	0.	993	P' e,d	0.233	31
n d	587.6	1.67270	460	0.995	0.	988	P' _{g,F'}	0.523	37
n e	546.1	1.67764	436	0.993	0.	982	P' i,h	0.937	74
n F	486.1	1.68750	420	0.989	0.	973			
n F'	480.0	1.68876	405	0.983	0.	959			
n .	435.8	1.69986	400	0.980	0.	950	Deviation of	f Rela	tive
n b	404.7	1.71069	390	0.967	0.	920	Partial Disp	ersion	ns ΔP
n	365.0	1.73056	380	0.950	0.	880	from the "N	ormal	Line"
n 334 1	334.1		370	0.915	0.	800	Δ P c.t	-0.00	10
n 349.6	312.6		365	0.882	0.	730	APc.s	-0.00	05
n 200 7	296.7		350	0.626	0.	310	ΔΡεο	0.000	05
n 296.7	280.4		334	0.200	0.	000	A P o F	0.002	23
n 200.4	248.3		320	0.000	0.	000	A P in	0.016	50
1 248.3]	310	0.000	0.	00	,g		
Constan	ts of Dis	norsion	300	0.000	0.	00	L	J	
Formula	01 01	persion	290	0.00	0.	00	Other Prope	erties	
P.	1 46141	885	280	0.00	0.0	00	(/ an/u 70%c[10]	6/K1	8.2
	0.24771	3010	270	0.00	0.0	00	((upp)upper[1()-6/K1	9
B2	0.2477	5019	270	0.00	0.0	00	T PC1	, ,,,,]	425
D 3	0.94995	226126	250	0.00	10.1	00	T. 13.00°C1		421
	0.01110	04660	230	0.00	+		T. 7.6[°C]		580
C ₂	0.05085	094009	{├───		+				500
C ₃	112.041	000					$C_p[J/(g \cdot K)]$		
0	(D)			No do			v[ww/(merc)]		
Constan	its of Dis	spersion		ode	1.27	1/22	o[a/am ³]		4.07
an/a i	0.50.0	-	L80/15		31	/33	p[g/cm*]	27	4.07
Do	2.59e-0	6		1.00 m			E[10°N/mm	']	50
D1	1.76e-0	8	Remar	ks	_		μ		0.233
D ₂	-2.03e-	11					K[10**mm²/	NJ	2.28
E ₀	1.17e-0	6	land at				HK _{0.1/20}		410
E1	1.09e-0	9	Relativ	e price			HG		2
λτκ[μm]	0.255								4
-							в		1
Tempera	ature Co	efficients	s of Refr	active Inde	X	6400			
	Δn _{re}	_{el} /∆T[10 ⁻⁶	/K]	$\Delta n_{abs} / \Delta$	[10	·•/K]	CR		1
[°C]	1060.0	е	g 1	060.0	e	g	FR		1
-40/-20	3.1	5.1	7.4	0.9 2	.8	5.1	SR		2
+20/+40	3.5	5.8	8.4	2.1 4	.4	6.9	AR		2.3
+60/+80	3.9	6.4	9.2	2.8 5	.2	8	PR		3
As of 11/	05/2003	Subject	to change	2			SCHOTT (Intica	Glass

6.16 N-SF5 (Schott)

SCHOTT	1		OPTIC	AL GLASS			SF		
N-SE5				67074	1)-	- 20.05		0.02	0050
673323	286		$n_{d} = 1$	67763	1)-	= 32.25	nF - nc	- 0.02	1177
073323	.200		ne - i	.01700	~	02	nF nC.	- 0.02	
Refractiv	ve Indice	es	Interna	l Transmitt	anc	eτi	Relative Par	tial	
	λ [nm]		λ [nm]	τ _i [10mm]	τ_i	[25mm]	Dispersion		
n 2325.4	2325.4	1.62935	2500	0.76	0.	50	P _{s,t}	0.227	70
n 1970.1	1970.1	1.63554	2325	0.83	0.0	63	P _{C,5}	0.480)7
n 1529.6	1529.6	1.64249	1970	0.950	0.8	880	P d,C	0.291	10
n 1060.0	1060.0	1.65080	1530	0.990	0.9	975	P _{e,d}	0.236	52
n t	2024.0	1.65188	1060	0.998	0.9	994	P _{g,F}	0.598	34
n s	852.1	1.65661	700	0.996	0.9	989	P i,h	<u> </u>	
n _r	706.5	1.66330	660	0.995	0.9	987		0.00/	10
n c	656.3	1.66664	620	0.995	0.9	988	P' _{s,t}	0.22	36
n _{C'}	643.8	1.66759	580	0.996	0.9	991	P' c',s	0.518	34
n 632.8	632.8	1.66848	546	0.995	0.9	988	P' d,C'	0.24	18
<u>n D</u>	589.3	1.67253	500	0.990	0.9	976	P' _{e,d}	0.232	27
n d	587.6	1.67271	460	0.982	0.9	956	P' g,F'	0.52	15
n e	546.1	1.67763	436	0.973	0.9	935	P'i,h		
n _F	486.1	1.68750	420	0.963	0.9	910		I	
n F'	480.0	1.68876	405	0.928	0.0	830			
n g	435.8	1.69998	400	0.905	0.	/80	Deviation of	fRela	tive
<u>n</u> h	404.7	1.71106	390	0.826	0.0	620	Partial Disp	ersio	ns∆P
n i	365.0		300	0.642	0.	330	from the "N	ormai	Line
n 334.1	334.1		3/0	0.276	0.0	040		0.00	77
n 312.6	312.0		305	0.116	0.0	000		0.002	14
n 296.7	290.7		330	0.000	0.0	000	A P F,e	0.00	28
n 280.4	248.3		320	0.000	0.0	000		0.000	
FI 248.3	240.5		310	0.000	0.0	000			
Constan	te of Die	noreion	300	0.000	0.0			I	
Formula		spersion	290	0.00	0.0	no 10	Other Prope	rtios	
P.	1 52481	889	280	0.00	0.0	no 10	(C-20/470%c[10-6	3/K1	7.94
B.	0 18708	5527	270	0.00	0.0	no	(/+20/+200°C[10	-6/K1	9.21
B ₂	1.42729	015	260	0.00	0.0	00	T _c [°C]		578
D ₃	0.01125	4756	250	0.00	10.		T ₁₀ ^{13.0} [°C]		576
	0.05889	95392		0.00	┢		T ₁₀ ^{7.6} [°C]		693
C.	129.141	675			\vdash		c _o [J/(q·K)]		0.77
03							λ[W/(m·K)]		1
Constan	ts of Dis	persion	Color C	ode					
dn/dT			λ80/λ5		40	/36	ρ[g/cm ³]		2.86
Do	-2.51e-0)7					E[10 ³ N/mm ²	'n	87
D ₁	1.07e-0	8	Remark	(S			μ		0.237
D ₂	-2.4e-11	1			Γ		K[10 ⁻⁶ mm ² /I	٧]	2.99
E ₀	7.85e-0	7			,		HK0.1/20	-	620
E ₁	1.15e-0	9	Relativ	e price			HG		3
λτκ[μm]	0.278								
							В		1
Tempera	ature Co	efficients	of Refra	active Index	(
	Δn_{re}	J∆T[10-6/	K]	$\Delta n_{abs} / \Delta T$	[10	•6/K]	CR		1
[°C]	1060.0	e	g 1	060.0 6	•	g	FR		0
-40/-20	1.8	3.1	4.8	-0.5 0.	8	2.5	SR		1
+20/+40	1.8	3.4	5.5	0.4 2	2	4	AR		1
+60/+80	1.9	3.7	6	0.8 2.	5	4.8	PR		1
As of 09/	03/2001/	Subject t	o change				SCHOTT C)ntica	Glass

6.17 Acoplante Óptico OCK-433

6.18 Acoplante Óptico OCK-451

OCK-451 Curing Optical Gel

Curing SmartGels Curing gels consist of an optical fluid and soluble optical thickening agents. When mixed they cure and harden into a viscoelastic solid, stable to >200°C. Curing gels can be injected into tight spaces to cure in place, or premolded and cured into shapes like washers, gaskets, or spacers.

Property	Test Method	NyoGel OCK-433	NyoGel OCK-451
Property of Uncured Mixture			
Color in bulk	Visual	Crystal Clear	Crystal Clear
		Part A Part B	Part A Part B
Kinematic Viscosity (cSt)	ASTM D-445	1270 1483	200 600
Specific Gravity	ASTM D-1217	1.04 1.05	1.06 1.08
Optical Absorption (%/micron)	Custom	<0.001 (400-740nm)	<0.001 (400-750nm)
Property of Cured Mixture (50:50 mix, $\pm 2\%$)			
Color in bulk	Visual	Crystal Clear	Crystal Clear
Refractive Index at 589.3 nm	ASTM D-1218	1.46	1.51
Refractive Index temp. coeff., 10°C to 65°C	ASTM D-1218	-3.2x10*/°C	-3.6x10-%C
Refractive Index vs. Wavelength, Cauchy fit	ASTM D-1218	1.4429+10,489λ ^{.₂}	1.4954+8,022λ·²
Optical Absorption (%/micron)	Custom	<0.002 (400-750nm)	<0.002 (400-750nm)
Set time at 25°C (>300,000 cP)	ASTM D-1084	10-30 minutes	14-60 minutes
Full Cure Time at 25°C	Custom	24 hours	24 hours
Hardness, Shore 00	ASTM D-2240	38	35
Coefficient of Thermal Expansion	TMA	1.2x103 cc/cc/°C	1.9x10 ^a cc/cc/ ^o C

Properties at 25°C unless otherwise noted. Test results are typical values. *Specified by Bellcore GR-2919-CORE for fused silica fiber splice/connectors. λ =nm

7. ESPECIFICACIONES DE MANUFACTURA E INTEGRACIÓN

7.1 Ópticos (Ordenes de Taller)

Estas se resumen en el anexo 2 como Planos de fabricación, esta ordenes resumen todas las especificaciones ópticas relevantes de acuerdo al Presupuesto de Errores (Referencia)

7.2 Opto-mecánicos

- 7.3 Geométricos
- 7.4 Integración y ensamble
- 7.5 Térmicos
- 7.6 Manufactura
- 7.7 Repetitividad
- 7.8 Mantenimiento
- 7.9 Ambientales
- 7.10 Embalaje, manejo, almacenamiento y transporte
- 7.11 Verificación

8 ANEXO 1: REQUERIMIENTOS DE ALTO NIVEL (RAN)

- 1. Espectrógrafo óptico, optimizado para el rango espectral 350-900 nm, de bajaintermedia dispersión y de rendija larga (no necesariamente de campo integral).
- 2. El espectrógrafo debe acoplarse al f/7.5 del telescopio 2.1 m. de SPM con guiador.
- Alta eficiencia es prioridad de alto nivel. Eficiencias (sin telescopio e incluyendo detector): 3500 Å > 15%, 4500 Å > 35%, 5500 Å > 36%, 7500 Å > 40%, 9000 Å > 15% (meta: sin rejilla ni CCD >80% de3500-9000 Å)
- 4. Capacidad de observar todo el intervalo espectral a una resolución mínima R~2000 ó mayor.
- 5. Modos de operación: cualquier brazo (sin dicroico) o ambos simultáneamente.
- Una máxima resolución real de R 5000 (FWHM) debe alcanzarse con una rejilla de 1200 ll/mm y dimensiones máximas de 154 x 206mm, y con una rendija nominal de 0.8".
- 7. Resolución espectral muestreada con más de 2 píxeles (máximo 4 píxeles) por FWHM (rendija 0.8").
- 8. Resolución real no debe variar en más de 10% a lo largo de la rendija (meta <5%).
- 9. Diámetro de pupila limitado por tamaño de rejillas comerciales.
- 10. Las rejillas deben ser intercambiables.
- 11. Durante la noche se podrán utilizar al menos dos rejillas sin necesidad de abrir el instrumento (meta 3/brazo).
- 12. Deber ser posible ver el campo, y centrar el objeto en rendija antes y durante la exposición.
- 13. Rendija larga: mínimo campo de 8' con una meta de 10'.

- 14. Escala sobre el detector ≤ 0.5 "/píxel (meta, ya que el muestreo espectroscópico tiene prioridad al espacial).
- 15. Ruido de lectura del detector no mayor 8e⁻ (meta <5).
- 16. Detector lineal hasta S/N 250. Pozo lineal de > 62,500 e⁻.
- 17. Ancho de rendija: mínimo ≤ al límite de difracción del espectrógrafo; máximo ≥9´ (meta > 10').
- 18. Tiempo muerto entre cambios de configuración: lámparas \leq 1 min.; otras (rejilla, rendija, etc.): \leq 3-5 min.
- 19. Repetitividad y estabilidad tales que:
 - a. durante una exposición de 0.5 Hrs. la resolución no debe degradarse más de un 2.5%,
 - b. al cambiar y volver a una configuración, la resolución se mantendrá dentro de un 5% (meta 3%),
 - c. calibraciones **relativas** al principio y final de la noche (en resolución y dispersión espectrales, escala espacial y respuesta a lo largo de la rendija y de longitud de onda), deben de ser aplicables a los datos de esa noche (en su forma relativa, no así absoluta o punto cero) con una confiabilidad mejor al 10% (meta de 5%) dados los cambios por temperatura (+/-6°C), flexiones u otras derivas.
- 20. Requerimientos ambientales de diseño, operación y supervivencia:
 - a. Optimización a T = 3°C y P = 562 mm Hg (temperatura y presión atmosférica).
 - b. Mínimo rango de operación: -10°C a 16°C T y 545 a 570 mm Hg en P.
 - c. Mínimo rango de supervivencia: T de -16°C a 34°C, P de 500 a 1100 mmHg.

9 ANEXO 2 PLANOS DE FABRICACIÓN DE LENTES

9.1 Corrector de Dispersión atmosférica

El diseño final de este elemento aun no ha sido revisado y aceptado para su fabricación por lo que no se presentan aun ordenes de taller detalladas

9.2 Brazo Azul

Se presenta la versión final de las Órdenes de Fabricación de las lentes del brazo azul del espectrógrafo ESOPO. Estas incluyen las tolerancias de fabricación de acuerdo con el documento de Presupuesto de Errores

9.3 Brazo Rojo

Se presenta la versión final de las Órdenes de Fabricación de las lentes del brazo rojo del espectrógrafo ESOPO. Estas incluyen las tolerancias de fabricación de acuerdo con el documento de Presupuesto de Errores

ESOPO TÍTULO: DISEÑO ÓPTICO

			<u>د</u>	
VALUES @ T=20 C (IRREGULARITIES: P INTERFEROGRAMS RE REPORT SCRATCH&DI THICKNESS MEASURE DIAMETER MEASURE GROUND EDGE: 0.01 CILINDRICITY <= 0 CILINDRICITY <= 0 REPORT ALL MEASUR	REPORT TESTING T) TV @ 546.07 NM QUTRED C MAPS C MAPS ERROR < 0.015 ERROR <= 0.010 0 RMS 010 RMS ERRO	→ → → → → → → → → → → → → →	P	
DIMENSIONS IN MILLI	1ETERS LI REACE	μ		PTCHT SURFACE
- - - - - - - - - - - - - - - - - - -				
R 81.7507-0:1CC		CLASS: SILICASCHOTT		R PLAND
Ø _E 56*4		N = 1.458435 ^{+2E-005}		0 E 60-8.1
CHAMFER: 0.5 - 1.0		V,= 67.79-0.02		CHAMFER: 0.5 - 1.0
0		0/6		8
3/ -(1,50)		1/ 10X0.25		3/ -(Ø.5Ø)
- /h		2/ 3;2		4/ 1'
5/ -MIL 60/20 (60)	(07/0h 7t			5/ - WIL 60/20 (COAL 40/20)
				6/ -
R: REPORT SURF/TP	BEST FIT-SPHERE			
MEASURE ERROR	< 0.006			
	ISO EL	EMENT DRAWING INDICH	TIONS ACCORDING TO ISO	10110
DATE	SCALE	DRAWN	RPPRV	TNSTTTILT DE ASTRONOMTA
DEC 6 2006	0.8300:1	F. J. COBOS	о. снара / А. FARAH	
PROJECT/TITLE				UNTYFRYLMHU NHLIUNHE HUIUNUMH UE MEALUU
ESOPO OPTICAL SPECT	OCRAPH			
PART/DRAWING		REVISION		CUNFICURALION 9 UF 12
FOL1 : BLUE-RED FIEL	D DOUBLET 1ST LENS	J. JESUS CONZALEZ		OPTICAL DESIGN VERSION: UCIUBER 2006

VALUES @ T=20 C (IRREGULARITIES: P INTERFENGRAMS RE INTERFENGRAMS RE REPORT SCRATCH&DI THICKNESS MEASURE DIAMETER MEASURE DIAMETER MEASURE GROUND EDGE: 0.01 CILINDRICITY <= 0 CILINDRICITY <= 0 REPORT ALL MEASUR	REPORT TESTING T) TV @ 546.07 NM QUIRED G MAPS G MAPS ERROR <= 0.010 0 RMS .010 RMS .010 RMS E TECHNIQUES & ERRO	DRS 15.5-0.1	P	
LEFT (SURFACE	MATER	RIAL	RIGHT SURFACE
R PLANO		GLASS: CAF2SCHOTT		R 70.47.5.1CX
SZERNSAG , SEE ATTAC	HMENT	N _a = 1.433843 ^{+2E-005}		SZERNSAG , SEE ATTACHMENT
Ø _E 60+8		V,= 95.17+0.02		ØE 60+8
CHAMFER: 0.5 - 1.0		Ø/ 6		CHAMFER: Ø.5 - 1.0
8		1/ 10X0.25		8
3/ -(Ø,5Ø)		2/ 1.5;2		3/ -C1.50)
47 - 7H				H/ 1,
5/ -MIL 60/20 (60	AL 40/20)			2/ - WIL 60/20 (GOAL 40/20)
6/ -				6/ -
				R: REPORT SURF/TP BEST FIT-SPHERE Menosing radia
	ISO EL	L EMENT DRAWING INDICAT:	IONS ACCORDING TO ISO	10110 10110 101100 101000
DATE	SCALE	DRAWN	BPRV	TNETTIITO DE BETDONOMTO
DEC 6 2006	0,8300:1	F. J. COBOS	О, СНАРА / А. FARAH	
PROJECT/TITLE		1		UNTVERSIDHU NHCIUNL HUIUNUMH DE MEXICU OPTTCAI TECHNICAI DIVISION
ESOPO OPTICAL SPECT	ROGRAPH			
PART/DRAWING		REVISION		CUNFICURALIUN 9 UF 12
FDL2 : BLUE-RED FIEL	D DOUBLET 2ND LENS	I. JESUS GONZALEZ		OPTICAL DESIGN VERSION: UCIOBER 2006

VALUES @ T=20 C (REPORT TESTING T) IRREGULARITIES: PTV @ 546.07 NM INTERFEROGRAMS REQUIRED REPORT SCRATCH&DIG MAPS THICKNESS MEASURE ERROR < 0.015 DIAMETER MEASURE ERROR < 0.016 GROUND EDGE: 0.010 RMS CILINDRICITY <= 0.010 RMS CILINDRICITY <= 0.010 RMS REPORT ALL MEASURE TECHNIQUES & ERR DIMENSIONS IN MILLIMETERS	RORS 12.3-6.1		
LEFT SURFACE	MATER	RIAL	RIGHT SURFACE
R 343.98-0.1CC	GLASS: SILICASCHDTT		R 3526 5 CX
SZERNSAG , SEE ATTACHMENT	N,= 1.458435.1E-005		SZERNSAG, SEE ATTACHMENT
Ø _E 110 +8	V ₄ = 67.79 ±0.02		Ø _E 110+8
CHAMFER: 0.5 - 1.0	0/6		CHAMFER: 0.5 - 1.0
8	1/ 10X0.25		8
3/ -[1,50]	2/ 3;2		3/ -(1.50)
H/ 1,			H/ -
5/ -MIL 60/20 (GOAL 40/20)			5/ - MIL 60/20 (GOAL 40/20)
6/ -			67 -
R: REPORT SURF/TP BEST FIT-SPHERE			R: REPORT SURF/IP BEST FIT-SPHERE
MEASURE ERROR < 0,006			MEASURE ERROR < 2,000
ISO EI	ELEMENT DRAWING INDICATI	CONS ACCORDING TO ISO	10110
DATE SCALE	DRAWN	нрряv	TNSTITIIO DE ASTRONOMIA
DEC 6 2006 0.4900:1	F. J. COBOS	О. СНАРА / А. FARAH	
PROJECT/TITLE			UNTVERSIUND NHLIUNNE AUTUNUT DE TEALUU
ESUPU UPIICHE SPECIRUGRAPH			
	KENTSTON		
BTL1 : BLUE TRIPLET 1ST LENS	J. JESUS CONZALEZ		UPIILTHL DESIGN VERSIUN: ULIUBER 2006

VALUES @ T=20 C (1 IRREGULARITIES: P INTERFEROGRAMS REI REPORT SCRATCH&DI REPORT SCRATCH&DI REPORT SCRATCH&DI CILINDRICITY <= 0 CILINDRICITY <= 0 REPORT ALL MEASURE DIMENSIONS IN MILLIF	REPORT TESTING T) TV @ S46.07 NM JUTRED 3 MAPS ERROR < 0.015 ERROR <= 0.010 0 RMS 0 RMS etchniques & erro ETERS	DRS 26.17-0.120.40.1 26.17-0.1 26.17-0.1 26.17-0.1 26.17-0.1 27.00.1 20.17-0.1 20.10-0.10-0.1 20.17-0.10-0.10-0.10-0.10-0.10-0.10-0.10-	P	
LEFT S	URFACE	MATE	RIAL	RIGHT SURFACE
R 219.55+0:1CX		CLASS: S-FPL53_MELT		R 343.98 8.1 CX
SZERNSAG , SEE ATTACI	HMENT	N,= 1.438720.1E-005		SZERNSAG , SEE ATTACHMENT
Ø _E 110 +8		V, = 94,92+0.02		Ø _E 110+8
CHAMFER: 0.5 - 1.0		Ø/ 6		CHAMFER: 0.5 - 1.0
8		1/ 10X0.25		0
3/ -(2,00)		2/5;2		3/ - (2,00)
Ч/ 1°				- /h
5/ -MIL 60/20 (GOF	(07/0H TE			2/ - WIL 60/20 (GOAL 40/20)
6/ -				6/ -
R: REPORT SURF/TP MEASURE ERROR	BEST FIT-SPHERE < 0,006			R: REPORT SURF/IP BEST FII-SPHERE MEASURE ERROR < 0,006
	ISO EL	EMENT DRAWING INDICAT	TONS ACCORDING TO ISO	10110
DATE	SCALE	DRAWN	APPRV	TNSTITIIN DE ASTRONOMTA
DEC 7 2006	Ø.Ч9ØØ:1	F. J. COBOS	о. снара / а. ғақан	
PROJECT/TITLE				OPTICAL TECHNICAL DIVISION
PART/NRAWING		REUTSTON		
		T TESUS CONZOLEZ		DETTCAL DESTGN VERSION: DCTORER 2006
BILZ ; BLUE IKITLEI	ZNU LENS	J. JESUS GUNZHLEZ		UI I TUILE DEVITOR VENATOR - VULVULIN 4444

VALUES @ T=20 C (IRREGUERTITES: P INTERFEROGRAMS RE REPORT SCRATCH&DI THICKNESS MEASURE DIAMETER MEASURE DIAMETER MEASURE GROUND EDGE: 0.01 CILINDRICITY <= 0 CILINDRICITY <= 0 REPORT ALL MEASUR	REPORT TESTING T) TV @ S46.07 NM QUTRED 3 MAPS 5 MAPS ERROR < 0.015 ERROR <= 0.010 0 RMS 0 RMS 0 RMS ETCHNIQUES & ERRO ETECHNIQUES & ERRO	DRS		
LEFT S	URFACE	MATE	RIAL	RIGHT SURFACE
R 371.465-0.1CX		CLASS: N-BAK2_MELT		R 219.53+0.1CC
SZERNSAG, SEE ATTAC	HMENT	N ₄ = 1.539424 ^{±1E-005}		SZERNSAG , SEE ATTACHMENT
Ø _E 110 ⁺⁸		V, = 59.69 ^{+0.02}		Ø _E 110 ^{+B}
CHAMFER: 0.5 - 1.0		0/6		CHAMFER: 0.5 - 1.0
8		1/ 10X0.25		8
3/ -(1,5Ø)		2/ 3;2		3/ -f1.50)
4/ 1.				- /h
57 - MIL 60/20 (GOI	(07/0H TE			5/ - MIL 60/20 (COAL 40/20)
- /9				6/ -
R: REPORT SURF/TP	BEST FIT-SPHERE			R: REPORT SURF/TP BEST FIT-SPHERE
MEASURE ERROR	< 0,006			MEASURE ERROR < 0.006
	ISO EL	EMENT DRAWING INDICAT	IONS ACCORDING TO ISO	10110
рнте	SCHLE	DRAWN	APPRV	TNSTTTUTO DE ASTRONOMTA
DEC 6 2006	а,ч900:1	F. J. COBOS	О, СНАРА / А, FARAH	
PROJECT/TITLE ESOBO OBITICAL SDECTE				OPTICAL TECHNICAL DIVISION
PART/DRAWING		REVISION		CONFIGURATION 9 OF 12
BTL3 : BLUE TRIPLET	3RD LENS	J. JESUS CONZALEZ		OPTICAL DESIGN VERSION: OCTOBER 2006

VALUES @ T=20 C (RE IRREGULARITIES: PTV INTERFEROCRAMS REQU REPORT SCRATCH&DIG THICKNESS MEASURE E DIAMETER MEASURE E CROUND EDGE: 0.010 CILINDRICITY <= 0.0 CILINDRICITY <= 0.0 REPORT ALL MEASURE DIMENSIONS IN MILLIME	PORT TESTING T) J @ 546.07 NM JIRED MAPS RRS RRS RRS TECHNIQUES & ERRO TECHNIQUES & ERRO	d d d t t t t t t t t t t t t t t t t t		
LEFT SUI	REACE	MATER	RIAL	RIGHT SURFACE
R PLANO		GLASS: N-BAK1_MELT		R 119.63 t0:1CC
SZERNSAG , SEE ATTACHM	ENT	N _d = 1.571893 ^{±1} E-005		SZERNSAG , SEE ATTACHMENT
Ø _E 137 ‡8		V, = 57.56+0.02		Ø _E 137 ⁺⁸
CHAMFER: 0.5 - 1.0		0/6		CHAMFER: Ø.5 - 1.0
Ø		1/ 10X0.25		8
3/ -(1,5Ø)		2/ 3;2		3/ -(1.5Ø)
47 -				4/ 1'
5/ -MIL 60/20 (COAL	. 40/20)			2/ - WIL 60/20 (COAL 40/20)
				6/ -
				R: REPORT SURF/TP BEST FIT-SPHERE
	T I I UST	EMENT DRAWING INDICAI	FONS ACCORDING ID ISO	MEHSUKE EKKUK < 0.000 10110
DATE	SCALE	DRAWN	APPRV	TNCTTTITO DE OCTDONOMTO
DEC 6 2006	0, 4000: 1	F. J. COBOS	о, снара / а, ғақан	
PROJECT/TITLE				UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO OPTICAL TECHNICAL DIVISION
ESUPU UPILCHL SPECTRUN	HTHY			
PART/DRAWING		REVISION		CUNFIGURALIUN & UF 12 Britch restruiterion: Actored 2007
BD1L1 : BLUE CAMERA 1:	ST DOUBLET 1ST LENS	J. JESUS GONZALEZ		<u>υγιτράς μερτών νεκρτύν, υριώρεκ δώψο</u>

VALUES @ T=20 C (F IRREGULARITIES: P1 INTERFEROGRAMS REG REPORT SCRATCH&DIG REPORT SCRATCH&DIG REPORT SCRATCH&DIG CILINDRICER MEASURE DIAMETER MEASURE DIAMETER MEASURE CILINDRICITY <= 0. CILINDRICITY <= 0. REPORT ALL MEASURE DIAMENSIONS IN MILLIM	EPORT TESTING T) V @ 546.07 NM UUTRED : MAPS ERROR < 0.015 ERROR < 0.015 RMS 010 RMS 010 RMS ETERS ETERS	DRS 40 -0 -		
LEFT S.	JRFACE	MATER	SIAL	RIGHT SURFACE
R 119.65-0.1CX		CLASS: S-FPL53_MELTB		R 1265.3+0.5CX
SZERNSAC, SEE ATTACH	MENT	N,= 1.43885016-005		SZERNSAG , SEE ATTACHMENT
DE 145+8		V,= 94.95±0.02		Ø _E 145 ⁺ B
CHAMFER: 0.5 - 1.0		Ø/ 6		CHAMFER: 0.5 - 1.0
8		1/ 10X0.25		0
3/ -(2.00)		2/5;2		3/ - [2.@@]
- /h				H/ 1'
5/ - MIL 60/20 (GOF	L 40/20)			5/ - MIL 60/20 (GOAL 40/20)
- /9				<i>6/ -</i>
P: PEPUPT SURE/TP	REST ETT-SPHERE			P: PEPOPT SURE/IP REST EIT-SPHERE
MEASURE ERROR <	0.006			MEASURE ERROR < 0.250
	ISO EL	EMENT DRAWING INDICATI	CONS ACCORDING TO ISO	10110
DATE	SCALE	DRAWN	HPRV	TNSTTTITO DE ASTRONOMTA
DEC 6 2006	0.3800:1	F. J. COBOS	О, СНАРА / А. FARAH	
PROTECT/TITLE				OPTICAL TECHNICAL DIVISION
PART/DRAWING	טפאחרת	REVISION		FUNETGURATION 9 DE 12
BD1L2 : BLUE CAMERA	IST DOUBLET 2ND LENS	J. JESUS GONZALEZ		OPTICAL DESIGN VERSION: OCTOBER 2006

UALUES @ T=20 C (F IRREGULARITIES: P INTERFEROCRAMS REC REPORT SCRATCH&DIC REPORT SCRATCH&DIC THICKNESS MEASURE DIAMETER MEASURE CILINDRICITY (= 0,016 CILINDRICITY (= 0,016 CILINDRICITY (= 0,016 DIMENSIONS IN MILLIM	EPORT TESTING T) V @ 546.07 NM JUTRED MAPS ERROR < 0.015 ERROR < 0.015 RMS 010 RMS 010 RMS ETERS	DRS 40.4 -0.1	}:0, 291 Ø	
LEFT S	JRFACE	MATER	SIAL	RIGHT SURFACE
R 217.6+0.1CX		CLASS: S-FPL53_MELTB		R 217.6-0:1CX
SZERNSAG, SEE ATTACH	MENT	N,= 1.438850 ^{±1E-005}		SZERNSAG , SEE ATTACHMENT
Ø _E 152 ⁴⁸		U, = 94.95 ±0.02		Ø _E 152+8
CHAMFER: 0.5 - 1.0		0/6		CHAMFER: 0.5 - 1.0
0		1/ 10X0.25		8
3/ -(2.00)		2/ 5;2		3/ -[2.00]
- /h				H/ 1,
5/ - MIL 60/20 (GOF	L 40/20)			2/ - MIL 60/20 (GOAL 40/20)
				6/ -
P. DEPUDT SIIDE/TD	REST ETT, SPHEPE			D' PEDADT SUIDE/ID DEST EIT-SPUEDE
MEASURE ERROR <	, 0,006			MEASURE ERROR < 0.006
	ISO EL	EMENT DRAWING INDICATI	CONS ACCORDING TO ISO	10110
DATE	SCALE	DRAWN	APPRV	TNSTITIID DE ASTRONOMIA
DEC 6 2006	0.3600:1	F. J. COBOS	О. СНАРА / А. FARAH	
PROJECT/TITLE				OPTICAL TECHNICAL DIVISION
PART/DRAWING	JGKHFH	REVISION		
BDZL1 : BLUE CAMERA .	ZND DOUBLET 1ST LENS	J. JESUS CONZALEZ		ΠΓΙΤΕΠΕ ΒΕΔΙΦΙΝ ΥΕΚΔΙΝΝΑ ULIDER Δ000

VALUES @ T=20 C (IRREGULARITES: P INTERFENOGRAMS RE REPORT SCRATCH&DI THICKNESS MEASURE DIAMETER MEASURE DIAMETER MEASURE CROUND EDGE: 0.01 CILINDRICITY <= 0 REPORT ALL MEASURE DIMENSIONS IN MILLI	REPORT TESTING T) TV @ S46.07 NM JUTRED 2 MAPS ERROR < 0.015 ERROR <= 0.010 0 RMS 0 RMS 0 RMS ETECHNIQUES & ERRO ETECHNIQUES & ERRO	DRS	¦:"#:€91 Ø	
LEFT 5	URFACE	MATE	RIAL	RIGHT SURFACE
R 217.57 ^{+0.1} CC		CLASS: BSM51Y_MELT		R 428.4±0;1CX
SZERNSAG , SEE ATTAC	HMENT	N _d = 1.603218 ^{+1E-005}		SZERNSAG , SEE ATTACHMENT
0 _E 153+8		$V_{d} = 60.66_{-0.02}^{+0.02}$		Ø _E 153*8
CHAMFER: 0.5 - 1.0		0/6		CHAMFER: Ø.5 - 1.0
8		1/ 10X0.25		0
3/ -(1,5Ø)		2/5;2		3/ -C1.50)
47 - YH				H/ 1'
5/ - MIL 60/20 (60)	(07/0H TE			5/ - MIL 60/20 (COAL 40/20)
<i>67 -</i>				6/ -
P: PEPUPI SIIPE/IP	REST ETT-SPHERE			D: PEDADT SUBE/ID BEST ETT-SPHEDE
MEASURE ERROR	k 0.006			MEASURE ERROR < 0.006
	ISO ELI	EMENT DRAWING INDICAT	IONS ACCORDING TO ISO	10110
DATE	SCALE	DRAWN	ярряч	TNSTITUTO DE ASTRONOMIA
DEC 6 2006	0.3600:1	F. J. COBOS	0. CHAPA / A. FARAH	
FKWEUL/ILILE FSAPA APTICAL SPECTE	ОСРАРН			OPTICAL TECHNICAL DIVISION
PART/DRAWING		REVISION		CONFIGURATION 9 OF 12
BD2L2 : BLUE CAMERA	ZND DOUBLET ZND LENS	J. JESUS CONZALEZ		OPTICAL DESIGN VERSION: OCTOBER 2006

UALUES @ T=20 C (IRREGUERTIES: F INTERFENGRAMS RE REPORT SCRATCH&DI THICKNESS MEASURE DIAMETER MEASURE GROUND EDGE: 0.01 CILINDRICITY <= 0 CILINDRICITY <= 0 REPORT ALL MEASURE DIMENSIONS IN MILLI	REPORT TESTING T) TV @ 546.07 NM QUTRED G MAPS G MAPS ERROR < 0.015 ERROR < 0.016 0 RMS .010 RMS .010 RMS e TECHNIQUES & ERRO HETERS			
LEFT	SURFACE	MATER	RIAL	RIGHT SURFACE
R 143.125±0;¦CC		GLASS: PBL26Y_MELT		R 141.6-0:1CX
Ø _E 154+8.2		N ₄ = 1.567396 -1E-005		ØE 162 t0
СНАМРЕК: 0.5 - 1,0		V,= 42.99±0.02		CHAMFER: 0.5 - 1.0
8		Ø/ 6		8
3/ -(1,50)		1/ 10X0.25		3/ -(1,50)
4/ -		2/5;2		H/ 1'
5/ -				5/ -
6/ -MIL 60/20 (GO	AL 40/20)			6/ -MIL 60/20 (GOAL 40/20)
R: REPORT SURF/TF MERCALAT FORM	BEST FIT-SPHERE			R: REPORT SURF/IP BEST FII-SPHERE Minister Lenson / a aa/
	ISO ELE	L EMENT DRAWING INDICAT.	IONS ACCORDING TO ISO	10110
DATE	SCALE	DRAWN	ВРRU	TNSTTTITO DE ASTDONOMTO
DEC 7 2006	Q.3400:1	F. J. COBOS	о. снара / а. ғакан	
PROJECT/TITLE				UNTVERSIUHU NHCIUNHL HUIUNUMH UE MEXICU OPTICAL TECHNICAL DIVISION
ESOPO OPTICAL SPECT	20GRAPH			
PART/DRAWING		REVISION		CUNFIGURATION & UF 12
BS1 : BLUE CAMERA 1:	ST SINGLET	J. JESUS GONZALEZ		UPIILHL DESIGN VERSIUN; ULIUBER 2000

VALUES @ T=20 C (INTERFEULARITIS: P INTERFEROGRAMS REI REPORT SCRATCH&DI THICKNESS MEASURE DIAMETER MEASURE DIAMETER MEASURE CILINDRICITY <= 0 CILINDRICITY <= 0 REPORT ALL MEASURE DIMENSIONS IN MILLIN	REPORT TESTING T) TV @ 546.07 NM QUIRED G MAPS G MAPS ERROR < 0.015 ERROR < 0.016 e RMS 0 RMS 0 RMS ETECHNIQUES & ERRC E TECHNIQUES & ERRC	d d d d d d d d d d d d d d d d d d d		
LEFT S	JURFACE	MATE		RIGHT SURFACE
R 235.5+0:1 CC		CLASS: PBL6Y_MELT		R 914-0.1 CC
0 _E 70+8		N _d = 1.531839 ^{±1E-005}		ØE 69+0.1
CHAMFER: 0.5 - 1.0		V,= 49.06 ^{+0.02}	_	CHAMFER: 0.5 - 1.0
8		Ø/ 6		8
3/ -(1.50)		1/ 10X0.25		3/ -(1,50)
4/ -		2/5;2		H/ 1'
5/ - MIL 60/20 (GOF	H 40/20)		_	5/ - MIL 60/20 (COAL 40/20)
			_	6/ -
R: REPORT SURF/TP	BEST FIT-SPHERE			R: REPORT SURF/TP BEST FIT-SPHERE
		EMENT DRAWING INDICAT	TONS ACCORTNC TO TSC	18110 19110
DATE	SCBIF		HEREN	
DEC 6 2006	1:00E2 0	E .T COBOS	П СНАРА / А БАВАН	TNSITIUID DE HSIKUNUMTH
PROJECT/TITLE	4 0 0 0))) -		UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO
ESOPO OPTICAL SPECTR	OCRAPH			
PART/DRAWING		REVISION	_	CONFIGURATION 9 OF 12
BS3 : BLUE CAMERA 36	D SINGLET	J. JESUS CONZALEZ		OPTICAL DESIGN VERSION: UCIOBER 2006

VALUES @ T=20 C (IRREGULARITIES: F INTERFEROGRAMS RE REPORT SCRATCH&D THICKNESS MEASURE DIAMETER MEASURE GROUND EDGE: 0.01 CILINDRICITY <= 0 CILINDRICITY <= 0 REPORT ALL MEASURE DIMENSIONS IN MILLI	REPORT TESTING T) TV @ 546.07 NM QUTRED G MAPS G MAPS ERROR < 0.015 ERROR < 0.015 ERROR < 0.016 0 RMS .010 RMS .010 RMS E TECHNIQUES & ERRO METERS	DRS 26-60.1		
LEFT :	SURFACE	MATE	RIAL	RIGHT SURFACE
R 194.3 ^{+0.1} CX		CLASS: PBL26Y_MELT		R PLAND
SZERNSAG , SEE ATTAC	HMENT	N _d = 1.567396 ^{±1E-005}		SZERNSAG , SEE ATTACHMENT
Ø _E 122 ⁺⁸		V, = 42.99±0.02		Ø _E 122 48
CHAMFER: 0.5 - 1.0		0/6		CHAMFER: 0.5 - 1.0
8		1/ 10X0.25		8
3/ -(1,5Ø)		2/ 5;2		3/ -[1.5Ø]
4/ -				H/ 1'
5/ -MIL 60/20 (GO	AL 40/20)			5/ - MIL 60/20 (GOAL 40/20)
<i>67 -</i>				6/ -
MEASURE ERROR	BESI FII-SPHERE < 0.006			
	ISO ELI	EMENT DRAWING INDICAT	IONS ACCORDING TO ISO	10110
DATE	SCALE	DRAWN	ВРРКИ	TNSTTTIITO DE ASTRONOMTA
DEC 6 2006	Ø,44ØØ:1	F. J. COBOS	О, СНАРА / А, FARAH	
PROJECT/TITLE				UNTVERSIUMU NALIUNNA DE MEXICU OPTTOAI TECHNITOAI DIVUTSTON
ESOPO OPTICAL SPECTI	ROGRAPH	-		
PART/DRAWING		REVISION		CONFIGURATION 9 OF 12
BS2 : BLUE CAMERA 21	ND SINGLET	J. JESUS CONZALEZ		OPTICAL DESIGN VERSION: OCTOBER 2006

UALUES @ T=20 C (IRREGULARITIES: P INTERFEROGRAMS RE REPORT SCRATCH&DI THICKNESS MEASURE DIAMETER MEASURE DIAMETER MEASURE GROUND EDGE: 0.01 CILINDRICITY <= 0 CILINDRICITY <= 0 REPORT ALL MEASURE DIAMENSIONS IN MILLI	REPORT TESTING T) TV @ S46.07 NM QUTRED G MAPS G MAPS ERROR < 0.015 ERROR <= 0.010 0 RMS .010 RMS e TECHNIQUES & ERRC METERS	۲۵۲ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵	P	
LEFT 5	SURFACE	MATE	RIAL	RIGHT SURFACE
R 187.07 ^{+0.1} CC		CLASS: SILICASCHOTT		R PLAND
Ø _E 65 ⁺¹		N,= 1.458435 ^{+2E-005}		Ør 66.48
CHAMFER: Ø.5 - 1.0		V _d = 67.79 +0.02		CHAMFER: Ø.5 - 1.0
0		0/6		8
3/ -(1,5Ø)		1/ 10X0.25		3/ -(Ø.50)
4/ -		2/ 3;2		H/ 1,
5/ -MIL 60/20 (60	AL 40/20)			5/ - MIL 60/20 (COAL 40/20)
				6/ -
R: REPORT SURF/TP MEASURE ERROR	BEST FIT-SPHERE < 0.006			
	ISO EL	EMENT DRAWING INDICAT	TONS ACCORDING TO ISO	10110
DATE	SCALE	DRAWN	<u>А</u> рряv	TNSTITIIO DE ASTRONOMIA
DEC 6 2006	0.7700:1	F. J. COBOS	о, снара / А. FARAH	
PROJECT/TITLE				UNTVERSIDHU NHULUNHE HULUNUMH DE MEALUU
ESOPO OPTICAL SPECTR	ROGRAPH			
PART/DRAWING		REVISION		CONFIGURATION 9 OF 12
BDW : BLUE ARM DEWAR	R WINDOW (4TH LENS)	J. JESUS CONZALEZ		OPTICAL DESIGN VERSION: OCTOBER 2006

VALUES @ T=20 C (IRREGULARITIES: P INTERFEROGRAMS RE REPORT SCRATCH%DI THICKNESS MERSURE DIAMETER MERSURE GROUND EDGE: Ø.01 CILINDRICITY <= Ø REPORT ALL MEASUR	REPORT TESTING T) TV @ 546.07 NM QUIRED G MAPS G MAPS ERROR < 0.010 B RMS 0 RMS 0 RMS ERROR < 0.010 C TECHNIQUES & ERRO	SS 12.99 12.99 12.19		
DIMENSIONS IN MILLI	1ETERS			
; LEFT ;	JURFACE	MATE	RIAL	RIGHT SURFACE
R 331.06-0:1 CC		GLASS: S-BAL11_MELT		R 1023.06-0.5CX
D _E 110 ⁺⁸		N ₄ = 1.572639.1E-005		Ø _E 110+8
CHAMFER: 0.5 - 1.0		V,= 57.88 -0.02		CHAMFER: 0.5 - 1.0
8		Q/ 6		8
3/ -(2,00)		1/ 10X0.25		3/ -fl.5)
4/ 1'		2/ 4;2		- /h
5/ - MIL 60/20 (CO	(07/0h Te			2/ - WIL 60/20 (COAL 40/20)
6/ -				6/ -
R: REPORT SURF/TP	BEST FIT-SPHERE			R: REPORT SURF/IP BEST FII-SPHERE
MEASURE ERROR	< 0,006			MEASURE ERROR < 0.150
	ISO EL	EMENT DRAWING INDICAT	IONS ACCORDING TO ISO	10110
DATE	SCALE	DRAWN	APPRU	INSTITUTO DE ASTRONOMIA
DEC 7 2006	0.4900:1	F. J. COBOS	О. СНАРА / А. FARAH	INTUEPSTOAD NACTONAL AUTONOMA DE MEYTON
PROJECT/TITLE				OPTICAL TECHNICHL DIVISION
PART/DRAWING	ССКИТИ	REVISION		CONETCIRATION 10 DE 12
0TI 1 · DED TOTOI ET 1	CT I ENC	T TECHC CONZOLEZ		OPTICAL DESTGN VERSION: DCTOBER 2006
אורו י אכט ואדריכי י	SI LEINS	4 . JESUS GUNZALEZ		

VALUES @ T=20 C (IRREGULARITIZS: P INTERFEROGRAMS RE REPORT SCRATCH&DI THICKNESS MEASURE DIAMETER MEASURE CROUND EDGE: 0.01 CILINDRICITY <= 0 REPORT ALL MEASUR DIMENSIONS IN MILLI	REPORT TESTING T) TV @ 546.07 NM QUIRED G MAPS G MAPS ERROR < 0.015 ERROR <= 0.010 0 RMS .010 RMS .010 RMS E TECHNIQUES & ERRO 4TTERS	DRS	P P P P	
LEFT S	SURFACE	MATE	ERIAL	RIGHT SURFACE
R 300.64-0.1CX		CLASS: S-FPL53_MELT		R 331.11±0:1CX
SZERNSAG , SEE ATTAC	HMENT	N,= 1.438720±1E-005		SZERNSAG , SEE ATTACHMENT
Ø _E 110+8		V, = 94,92,02		Ø _E 110 +8
CHAMFER: 0.5 - 1.0		0/6		CHAMFER: 0.5 - 1.0
8		1/ 10X0.25		8
3/ -(2,00)		2/5;2		3/ - (2,00)
Ч/ 1'				- /h
5/ -MIL 60/20 (GO	AL 40/20)			2/ - WIL 60/20 (GOAL 40/20)
6/ -				6/ -
R: REPORT SURF/TP MEASURE ERROR	BEST FIT-SPHERE < 0.006			R: REPORT SURF/TP BEST FIT-SPHERE MEASURE ERROR < 0,006
	ISO EL		TONS ACCORDING TO ISO	10110
DATE	SCALE	DRAWN	APRV	TNSTITIIN DE ASTRONOMTA
DEC 7 2006	Ø.4900:1	F. J. COBOS	о. снара / а. ғакан	
PROJECT/TITLE				UNTVERSIDHU NHLIUNH HUIUNUMH DE MEXICU OPTICAL TECHNICAL DIVISION
ESOPO OPTICAL SPECT	COCKAPH			
PART/DRAWING		REVISION		CUNFIGURALIUN IV UF IZ
RTL2 : RED TRIPLET :	2ND LENS	J. JESUS CONZALEZ		UPIILHE DESIGN VERSIUN: ULIUBER 2000

			<	
		d	P	
VALUES @ T=20 C (1 IRREGULARITIES: P.	REPORT TESTING T) V © 546.07 NM		1:0-02 1:0+02	
INTERFEROGRAMS REU	JUTRED MADE		.10	
THICKNESS MEASURE	ERROR < 0.015			
DIAMETER MEASURE (GROUND EDGE: 0.010	ERROR <= 0.010 0 RMS			
CILINDRICITY <= 0 REPORT ALL MEASUR! DIMENSIONS IN MILLIM	.Ø10 RMS E TECHNIQUES & ERRC ETERS	JRS 11, 8 40.1 →		
LEFT S	URFACE	МАТЕ	RIAL	RIGHT SURFACE
R 420.5+0:1CX		CLASS: S-BAL11_MELT		R 300.6-8:1 CC
D _E 110 ⁴⁸		N _s 1.572639 ^{+1E-005}		Ø _E 110+8
СНАМFER: 0.5 - 1.0		V, = 57,88-0.02		CHAMFER: 0.5 - 1.0
0		0/6		8
3/ -(1,50)		1/ 10X0.25		3/ -(1.50)
H/ 1,		2/ 4;2		H/ -
5/ -MIL 60/20 (COF	1L 40/20)			2/ - WIL 60/20 (COAL 40/20)
- /9				6/ -
R: REPORT SURF/TP	BEST FIT-SPHERE			R: REPORT SURF/TP BEST FIT-SPHERE
MEASURE ERROR	2 0.000			MEASURE ERROR < Ø.ØØ6
	ISO EL	EMENT DRAWING INDICAT	TONS ACCORDING TO ISO	10110
DATE	SCALE	DRAWN	APPRV	TNSTTTUTO DE ASTRONOMTA
DEC 7 2006	0.4900:1	F. J. COBOS	О. СНАРА / А. FARAH	
PROJECT/TITLE				ИЛТУЕКЗДИЛИ ИНСТИИНИ И ИЛИИИИ И ИЛИИИИ ПРТТСАІ ТЕСНИТСАІ ПТИТЗТОИ
ESOPO OPTICAL SPECTR	оскарн	_		
PART/DRAWING		REVISION		CUNFICURALION 10 UF 12
RTL3 : RED COLLIMATO	R TRIPLET 3RD LENS	J. JESUS CONZALEZ		OPTICAL DESIGN VERSION: UCIOBER 2006

VALUES @ T=20 C (IRREGULRITES: P INTERFENGRAMS RE REPORT SCRATCH&DI REPORT SCRATCH&DI THICKNESS MEASURE DIAMETER MEASURE DIAMETER MEASURE GROUND EDGE: Ø.01 GROUND EDGE: Ø.01 CILINDRICITY <= Ø REPORT ALL MEASURI	REPORT TESTING T) TV @ 546.07 NM QUIRED G MAPS G MAPS ERROR < 0.015 ERROR < 0.016 ERROR < 0.010 0 RMS 0 RMS C TECHNIQUES & ERRO E TECHNIQUES & ERRO		P P P P P P P P P P P P P P	
LEFT S	URFACE	MATE	RIAL	RIGHT SURFACE
R 972.4 ^{+0.1} CX		CLASS: N-SSK5_MELT		R 177.6-0:1 CC
D _E 13748		N,= 1.658240 ^{+1E-005}		DE 137+8
СНАМРЕК: 0.5 - 1.0		V,= 50.79+0.02		CHAMFER: 0.5 - 1.0
8		0/6		8
3/ -(1,50)		1/ 10X0.25		3/ -(1.50)
ч/ - /h		2/ 3;2		H/ 1'
5/ -MIL 60/20 (GO	(07/0h TE			5/ - WIL 60/20 (COAL 40/20)
- /9				
R: REPORT SURF/TP Mrosture report	BEST FIT-SPHERE			R: REPORT SURF/TP BEST FIT-SPHERE
	ISO EL	LEMENT DRAWING INDICAT	IONS ACCORDING TO ISO	ITETISURE ERRUR & 0.000 10110
DATE	SCALE	DRAWN	APPRV	TNCTTTITO DE ACTDONOMTO
DEC 7 2006	0.4000:1	F. J. COBOS	о. СНАРА / А. FARAH	
PROJECT/TITLE				UNTVERSIUHU NACIUNAL AUTUNUMA DE MEXICU OPTICAL TECHNICAL DIVISION
ESOPO OPTICAL SPECTE	OCRAPH			
PART/DRAWING		REVISION		CUNFICURALIUN 10 UF 12
RD1L1 : RED CAMERA 1	ST DOUBLET 1ST LENS	T. JESUS CONZALEZ		OPIICHE DESIGN VERSIUN: UCIUBER Z006

URLUES @ T=20 C (IRREGULARITIES: F INTERFEROGRAMS RE REPORT SCRATCH&DI THICKNESS MEASURE DIAMETER MEASURE CRUND EDGE: Ø.01 CILINDRICITY < 8 CILINDRICITY < 8 CILINDRICITY MALLI	REPORT TESTING T) TV @ 546.07 NM QUIRED G MAPS G MAPS ERROR < 0.015 ERROR < 0.015 ERROR < 0.016 0 RMS .010 RMS .010 RMS ETCHNIQUES & ERRO TETERS	DRS 27 -0.1		
LEFT	SURFACE	MATER	2 IAL	RIGHT SURFACE
R 177.62 ^{+0.1} CX		CLASS: S-FPL53_MELTD		R PLANO
SZERNSAG , SEE ATTAG	HMENT	N,= 1.438730 ^{±1E-005}		SZERNSAG , SEE ATTACHMENT
Ø _E 140+8		V,= 94.92.02		Ø _E 140+8
CHAMFER: Ø.5 - 1.0		Ø/ 6		CHAMFER: 0.5 - 1.0
8		1/ 10X0.25		8
3/ -(2,00)		2/ 4;2		3/ -(0,5)
H/ -				4/ 1,
5/ -MIL 60/20 (GO	AL 40/20)			5/ - MIL 60/20 (GOAL 40/20)
- /9				6/ -
R: REPORT SURF/TF MEASURE ERROR	BEST FIT-SPHERE < 0.006			
	ISO ELI	EMENT DRAWING INDICATI	CONS ACCORDING TO ISO	10110
DATE	SCALE	DRAWN	НРРRU	TNSTITIIN DE ASTRONOMIA
DEC 7 2006	Ø.39ØØ:1	F. J. COBOS	О. СНАРА / А. FARAH	
PROJECT/TITLE ESODO ODITICAL SEECTE				OPTICAL TECHNICAL DIVISION
PART/DRAWING		REVISION		CONFTGURATION 10 DF 12
RD1L2 : RED CAMERA	IST DOUBLET 2ND LENS	T. JESUS GONZALEZ		OPTICAL DESIGN VERSION: OCTOBER 2006

URLUES @ T=20 C (INTERFEUCHRITIES: F INTERFEROGRAMS RE REPORT SCRATCH&D THICKNESS MEASURE DIAMETER MEASURE GROUND EDGE: 0.01 CILINDRICTY (2.01 DIAMENSIONS IN MILLI DIMENSIONS IN MILLI	REPORT TESTING T) PTU @ 546.07 NM EQUIRED CG MAPS E ERROR < 0.015 ERROR <= 0.010 10 RMS 3.010 RMS 3.010 RMS 3.010 RMS	L 2 - 0.1		
LEFT	SURFACE	MATER	RIAL	RIGHT SURFACE
R Z44.3 <u>-0;</u> СХ		CLASS: S-FPL53_MELTC		R 171.73+0.1CX
SZERNSAG , SEE ATTAI	CHMENT	N,= 1.438833 ^{+1E-005}		SZERNSAG , SEE ATTACHMENT
Ø∈ 144+8		V,= 94.76+0.02		0e 144.8
CHAMFER: 0.5 - 1.0		0/6		CHAMFER: 0.5 - 1.0
8		1/ 10X0.25		0
3/ -(2.00)		2/ 5;2		3/ -(2,00)
H/ -				H/ 1'
5/ -MIL 60/20 (GC	JAL 40/20)			5/ - MIL 60/20 (COAL 40/20)
				6/ -
K: KEPUKI SUKF/IF MEASURE ERROR	C BESI FII-SPHERE			K: KEPUKI SUKFAIP BESI FII-SPHEKE Measure error < 0.006
	ISO ELI	EMENT DRAWING INDICAT	IONS ACCORDING TO ISO	10110
DATE	SCALE	DRAWN	ярркv	TNSTTTIIT DE ASTRONOMTA
DEC 7 2006	0.3800:1	F. J. COBOS	О. СНАРА / А. FARAH	
PROJECT/TITLE				OPTICAL TECHNICAL DIVISION
ESULU ULITUAL STEUI PART/DRAWING		REVISION		CONETCIPATION 10 DE 10
				NDTTER DESTEN DEPENDING TO DETER
КО2СІ : КЕИ СНМЕКН	ZND DOUBLEI ISI LENS I	J. JESUS GUNZHLEZ		UI LTUIL DEVITOR VENJIAN UNIVER 2000

VALUES @ T=20 C (REPORT TESTING T) IRREGULARITIES: PTV @ 546.07 NM INTERFEROGRAMS REQUIRED REPORT SCRATCH&DIG MAPS THICKNESS MEASURE ERROR < 0.015 DIAMETER MEASURE ERROR <= 0.010 GROUND EDGE: 0.010 RMS CILINDRICITY <= 0.010 RMS		≤ 1:0,125,0 1	
REPURI HLL MEHSURE LECHNIQUES & ERR Dimensions in Millimeters	KURS 14-6.1 A R-		
LEFT SURFACE	MATERIAL		RIGHT SURFACE
R 171.7-0.1 CC	GLASS: N-LAK8_MELT		R 693.9.00.10X
Ø _E 142.48	N _d = 1.713081 ^{+1E-005}		ØE 14640
CHAMFER: 0.5 - 1.0	V _d = 53,89±0.02		CHAMFER: 0,5 - 1,0
Ø	0/ 6		8
3/ -(1.5Ø)	1/ 10X0.25		3/ -(1.5Ø)
- /h	2/ 3;2		۲۰, ۱ /h
2/ -WIL 60/20 (COAL 40/20)			2/ - WIL 60/20 (COAL 40/20)
- /9			6/ -
R: REPORT SURF/TP BEST FIT-SPHERE			R: REPORT SURF/TP BEST FIT-SPHERE
MEASURE ERROR < 0.006			MEASURE ERROR < 0.006
ISO EI	LEMENT DRAWING INDICATIONS	: ACCORDING TO ISO	10110
DATE SCALE	DRAWN		TNSTITIIO DE ASTRONOMIA
DEC 7 2006 0.3900:1	F. J. COBOS 0. 0	СНАРА / А. ГАКАН	
PROJECT/TITLE			UNITAERSTURD INCLUNAL AUTUNUTH DE MEALUU
ESOPO OPTICAL SPECTROGRAPH			
PARTZDRAWING	KENTSION		CUNFIGURALIZUN IØ UF 12
RDZL2 : RED CAMERA ZND DOUBLET ZND LENS	J. JESUS CONZALEZ		OPIICHL DESIGN VERSIUN: UCIUBER 2006

VALUES @ T=20 C (IRREGULARITIES: P INTERFEROGRAMS RE REPORT SCRATCH&DT THICKNESS MEASURE DIAMETER MEASURE GROUND EDGE: 0.01 CTI TNUPTCTTY <= 0	REPORT TESTING T) TV @ 546.07 NM JUTRED 3 MAPS 5 MAPS ERROR < 0.015 ERROR <= 0.010 0 RMS 010 PMS		P	
REPORT ALL MEASUR	E TECHNIQUES & ERRC 16TERS	JRS 16.6-8.1 →		
LEFT S	URFACE	MATE	RIAL	RIGHT SURFACE
R 251.6 ^{+0.1} CC		GLASS: SF5_MELT		R 196.9-80.[CX
DE 147+8		N = 1.672885 -1E-005		Ø _E 153 t8
CHAMFER: 0.5 - 1.0		V,= 32.20 +0.02		CHAMFER: 0.5 - 1.0
8		0/6		8
3/ -(1,50)		1/ 10X0.25		3/ -(1.50)
ч/ -		2/ 3;2		H/ 1'
5/ - MIL 60/20 (GOF	(07/0h Tt			5/ - MIL 60/20 (GOAL 40/20)
- /9				6/ -
R: REPORT SURF/TP MEASUBE EDDD	BEST FIT-SPHERE			R: REPORT SURF/TP BEST FIT-SPHERE MEASTIPE EDDDD / 0 002
	ISD EL	EMENT DRAWING INDICAT	IONS ACCORDING TO ISO	10110 10110
DATE	SCRLE	DRAWN	APPRV	TNETTTITO DE BETDONOMTO
DEC 7 2006	0.3600:1	F. J. COBOS	О. СНАРА / А. ГАКАН	
PROJECT/TITLE				ΟΡΤΤΓΑΙ ΤΕΓΗΝΙΓΟΝ ΝΕΧΙΟΝ ΟΡΤΤΓΑΙ ΤΕΓΗΝΙΓΟΝ ΠΙυΤΥΣΤΟΝ
ESOPO OPTICAL SPECTR	OCRAPH	-		
PART/DRAWING		REVISION		CONFIGURATION 10 OF 12
RS1 : RED CAMERA 1ST	SINGLET LENS	T. JESUS CONZALEZ		OPIICHL DESIGN VERSION: UCIOBER 2006

VALUES @ T=20 C (IRREGULARITIES: P INTERFEROGRAMS RE REPORT SCRATCH&DI REPORT SCRATCH&DI THICKNESS MEASURE DIAMETER MEASURE GROUND EDGE: 0,01 CROUND EDGE: 0,01 CILINDRICITY < 0 REPORT ALL MEASURE DIMENSIONS IN MILLIN	REPORT TESTING T) TV @ 546.07 NM QUIRED G MAPS ERROR < 0.015 ERROR <= 0.010 0 RMS 010 RMS e TECHNIQUES & ERRO	DRS 26.1.49.1	L [™] Shī Ø P	
LEFT \$	SURFACE	MATE	RIAL	RIGHT SURFACE
R 212.7 ^{+0.1} CX		CLASS: N-SSK5_MELT		R PLAND
0 _E 13548		N,= 1.658240.1E-005		Ø _E 135+8
CHAMFER: 0.5 - 1.0		V,= 50.79+0.02		CHAMFER: 0,5 - 1,0
8		0/6		0
3/ -(1,50)		1/ 10X0.25		3/ - (Ø.5Ø)
- /h		2/ 3;2		H/ 1,
5/ - MIL 60/20 (GOI	(07/0h Te			2/ - WIL 60/20 (GOAL 40/20)
- /9				6/ -
R: REPORT SURF/TP MICCIPIC TOPOD	BEST FIT-SPHERE			
		EMENT DODITNE INDICAT		01101
DATE	SCALE LOUIS	DRAWN	HPPRV ILCCURDING IN 130	
ПЕС 7 2006	а чтая: 1	E. T. COROS	П. СНАРА / А. ЕАРАН	TNSITIUID DE HSIKUNUMTH
PROJECT/TITLE))) ;		UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO
ESOPO OPTICAL SPECTE	OGRAPH			UPIICHL IECHNICHL UIVISIUN
PART/DRAWING		REVISION		CONFIGURATION 10 OF 12
RS2 : RED CAMERA 2NC	I SINGLET LENS	J. JESUS CONZALEZ		OPTICAL DESIGN VERSION: OCTOBER 2006

VALUES @ T=20 C (REPORT TESTING T) IRREGULARITIES: PTV @ 546.07 NM INTERFEROGRAMS REQUIRED REPORT SCRATCH&DIG MAPS THICKNESS MEASURE ERROR < 0.015 DIAMETER MEASURE ERROR < 0.015 DIAMETER MEASURE ERROR < 0.016 GROUND EDGE: 0.010 RMS CILINDRICITY <= 0.010 RMS CILINDRICITY <= 0.010 RMS REPORT ALL MEASURE TECHNIQUES & ERR DIMENSIONS IN MILLIMETERS	SDRS	<pre></pre>	
LEFT SURFACE	MATERIAL		RIGHT SURFACE
R 283.40.1 CC	GLASS: SF5_MELT		R 1250-0.1CC
Ø _E 69*8	N _d = 1.672885.1E-005		Ø _E 68‡0
CHAMFER: 0,5 - 1,0	$V_{d} = 32, 20_{-0.02}^{+0.02}$		CHAMFER: 0.5 - 1.0
8	Ø/ 6		8
3/ -(1,5Ø)	1/ 10X0.25		3/ -(1.50)
- /h	2/ 3;2		H/ 1,
5/ -WIL 60/20 (COAL 40/20)			2/ - WIL 60/20 (COAL 40/20)
			6/ -
R: REPORT SURF/TP BEST FIT-SPHERE MEASUBE EDDOD / 0 002			R: REPORT SURF/TP BEST FIT-SPHERE MEasube בספרט ע ממעע
	SLEMENT DRAWING INDICATIONS AC	CCORDING TO ISO	10110 10110
DATE SCALE	DRHWN		TNETTTITO DE GETDONOMTO
DEC 7 2006 0.7400:1	F. J. COBOS D. CHF	ара / а. ғақан	
PROJECT/TITLE			ИЛУЕКУДИНИ ИНСТИИНС НИ ИИИМН ИЕ МЕХТСИ ОРТТСАІ ТЕСНИТСАІ ПТИТSTON
ESOPO OPTICAL SPECTROGRAPH			
PART/DRAWING	REVISION		CUNFIGURALIUN IN UF IZ
RS3 : RED CAMERA 3RD SINGLET LENS	J. JESUS CONZALEZ		OPIICHE DESIGN VERSIUN: UCIUBER ZUUG

VALUES @ T=20 C (IRREGULARITIES: P INTERFEROGRAMS RE REPORT SCRATCH&DI THICKNESS MEASURE DIAMETER MEASURE GROUND EDGE: Ø.01 CILINDRICITY <= Ø REPORT ALL MEASUR DIAMENSIONS IN MILLIN DIAMENSIONS IN MILLIN	REPORT TESTING T) TV @ 546.07 NM QUIRED G MAPS G MAPS ERROR <= 0.015 ERROR <= 0.010 0 RMS .010 RMS .010 RMS E TECHNIQUES & ERRO ÆTERS	C C C C C C C C C C C C C C C C C C C	P	
LEFT	SURFACE	MATE	RIAL	RIGHT SURFACE
R 187.07 ^{+0.1} CC		CLASS: SILICASCHOTT		R PLANO
Ø _E 65 ⁺¹		N "= 1.458435 -2E-005		ØE 6648
CHAMFER: 0,5 - 1,0		V ₄ = 67.79 ^{+0.02}		CHAMFER: 0.5 - 1.0
0		Ø/ 6		8
3/ -(1.50)		1/ 10X0.25		3/ -(Ø.5Ø)
4/ -		2/ 3;2		4/ 1'
5/ - MIL 60/20 (GO	(07/0h TE			5/ - MIL 60/20 (COAL 40/20)
				6/ -
R: REPORT SURF/TP MEASURE ERROR	BEST FIT-SPHERE < 0.006			
	ISO EL	EMENT DRAWING INDICAT:	IONS ACCORDING TO ISO	10110
DATE	SCALE	DRAWN	ВРRU	TNSTITIIO DE ASTRONOMIA
DEC 7 2006	0.7700:1	F. J. COBOS	о. снара / а. ғақан	
PROJECT/TITLE				ИИТЛЕКУТИНИ ИНСТИИНЕ НИТИИЛИН ИЕ МЕХТСИ ПРТТЕСАТ ТОЛ
ESOPO OPTICAL SPECTA	OCRAPH			
PART/DRAWING		REVISION		CUNFICURALIUN 10 UF 12
RDW : RED ARM DEWAR	WINDOW (4TH LENS)	J. JESUS GONZALEZ		OPIICHE DESIGN VERSIUN: UCIUBER Z006