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PARTICLE FILTER-BASED ESTIMATION OF ORBITAL PARAMETERS OF
VISUAL BINARY STARS WITH INCOMPLETE OBSERVATIONS

Rubén Claveria!, Rene A. Mendez?, Marcos Orchard!

Resumen: Este trabajo aborda el ajuste
de Orbitas desde una 6ptica Bayesiana,
aproximando la distribucién a posteriori de
parametros orbitales a través de Filtro de
Particulas. Adicionalmente, se presenta un
esquema de imputacién multiple para incor-
porar mediciones parciales en la rutina de es-
timacion.
Abstract: This work addresses the problem
of orbital estimation from a Bayesian point
of view, using the Particle Filter technique to
approximate the posterior distribution of or-
bital parameters. Additionally, we present a
multiple imputation scheme as a means to in-
clude partial measurements into the analysis.
In binary stars, mass estimation can be ac-
complished through the study of their orbital pa-
rameters —Kepler’s Third Law establishes a strict
mathematical relation between orbital period, orbit
size (semi-major axis) and the system’s total mass.
Astronomers frequently deal with the problem of
partial measurements (i.e., observations having one
component missing, either in (X,Y) or (p,8) rep-
resentation), which are often discarded. This work
presents a particle-filter-based method to perform
the estimation and uncertainty characterization of
orbital parameters in the context of partial measure-
ments. The proposed method uses a multiple impu-
tation strategy to cope with partial information. The
algorithm is tested on synthetic and real data.
Particle Filter (PF) is a family of Monte Carlo
techniques to address the filtering problem. This
problem consists of estimating the real state of a
system that: i) can be represented with a space-
state model that evolves over time (Eq. 1); and ii)
receive information about its current state through
noisy measurements at each time step ¢t (Eq. 2). If
the system of interest satisfies conditions of linear-
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ity and gaussianity, the optimal solution is the well-
known Kalman Filter (Kalman 1960). Since most
systems do not comply with the aforementioned con-
ditions, sub-optimal approaches such as PF arise as
an interesting alternative (Candy 2009).

¢ = f(xe—1,wi—1) (Ewvolution equation), (1)
zt = g(xg,v¢)  (Observation equation)  (2)

In the equations above, state x; is related to the
past state value x;_1 and system noise w;_; through
function f(-), whereas observation z; is a function
of current state z; and observation noise v;. PF is
based on the representation of the probability den-
sity function (p.d.f) of state z; by means of a set of
samples xiz) with their respective weights w,ﬁ”. At
each time step, weights must be updated in order to
incorporate the information provided by observation
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In this work, we adopt the Artificial Evolution of Pa-
rameters approach (Liu 2001). The PF framework is
used to approximate the p.d.f. of orbital parameters
(not the state) of a binary star (P, T, e, a, w, Q, 7).
Particles are forced to evolve according to a random
walk (Eq. 4) and the statistical characterization of
the Mean Square Error is used as a likelihood func-
tion (Eq. 5):

2 =2 4+ Y, with ¢ ~ N(0,3), (4)
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where 7, k index the particles and the epochs, respec-
tively. In Eq. 5, observations X (Yj) are compared
to the positions X5 (YD) defined by particle
xii) at epoch k. It can be proven that, under certain
assumptions, yt(“ follows a Gamma distribution.

Since the vast majority of data-processing tech-
niques require complete data sets as an input, a
common technique to cope with missing data is to
fill in or impute plausible values. In this work, a
multiple imputation (MI) scheme is preferred over
the single imputation approach. MI replaces each
missing datum with a set of plausible values, which
represents the uncertainty about the right quantity
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TABLE 1
AVERAGE VALUE OF ESTIMATED
PARAMETERS
T P [yr] e a larcsed) | w[rad] | Q[rad] | i [rad]

Input
Parameters
Complete 0.2820 50.4178 0.5961 7.5030 2.5639 0.7735 2.3766
data (0.0033) | (0.5571) | (0.0045) | (0.0289) | (0.0234) | (0.0201) | (0.0075)
Data 0.2859 | 49.8637 | 0.5909 7.4874 2.5669 0.7717 2.3823
Discarding | (0.0144) | (2.3624) | (0.0153) | (0.1129) | (0.0239) | (0.0213) | (0.0128)
Multiple 0.2830 | 50.2793 | 0.5949 7.5035 2.5670 0.7740 2.3770
Tmputations | (0.0059) | (0.9475) | (0.0122) | (0.0354) | (0.0397) | (0.0316) | (0.0072)

(Rubin 2004). When performing MI, the most criti-
cal aspect to be considered is how the imputed val-
ues are obtained (i.e., the distribution from which
the imputed samples are drawn), and this aspect is
problem-dependent. In this work, we use the condi-
tional p.d.f. of orbital parameters x; as a proposal
distribution for imputed values.

The experiments carried out are described next.
Parameters of the well-known binary star Sirius were
used to generate synthetic data (values in Table 1),
with observation noise having standard deviation
o = 0.075" for both X and Y axes. Three scenarios
were considered: i) Full data set is available (N = 11
measurements; Figure 2a). ii) Data Discarding (Fig.
2b): observations at epochs 10 and 11 (filled cir-
cles in the figure) are incomplete —only X is known—
and discarded from the analysis. 3) Multiple Impu-
tations (Fig. 2c): same data set as in the previous
point, but Multiple Imputation Particle Filter is car-
ried out in order to include partial information. Fi-
nally, the algorithm is applied to objects HU177 and
I669AB, whose data data is taken from (Tokovinin
2015). Table 1 displays the results obtained from a
series of 10 repetitions of the experiments described
previously (standard deviation in parentheses). Fig-
ure 1 shows an example of the estimated p.d.f. of
orbital parameters obtained by using the proposed
algorithm.

0.2839 50.09 0.5923 7.5000 2.5703 0.7779 2.3829

)

(a) Parameter T  (b) Parameter P (c) Parameter e
Fig. 1. Marginal p.d.f. of parameters (T, P, e). (bar: real
value; continuous line: estimated p.d.f.)

Figure 2 shows a visual comparison of the results
obtained in the three scenarios (black line: refer-
ence orbit; gray line: orbit estimate). Figure 3 dis-
plays a visualization of the results of our method ap-
plied to real data (black: orbit obtained with tradi-
tional least-squares algorithm; gray: orbit obtained
with PF). Real observations are represented by cir-

cles, whereas imputed observations are represented
by dots. In Figure 2b the orbit estimate shows a cer-
tain degree of inconsistency with the reference orbit.

The contribution of this work is twofold: first,
it adds robust uncertainty characterization to the
problem of orbital parameters estimation; secondly,
it provides a strategy to cope with incomplete ob-
servations. Results on artificial data suggest that
the incorporation of incomplete observations can in-
crease the precision of the estimation without a no-
ticeable decrease in the accuracy. Future work in-
cludes the use of uncertainty characterization in the
planning of astronomical observation campaigns, in-
vestigating alternative convergence criteria for the
particle filter and formulating an adaptive evolution
noise.

(a) Full Data Set (b) Discarding

Fig. 2. Orbit estimation in three scenarios.

(¢) Imputations

(a) HU177 (b) 1669AB
Fig. 3. Orbit estimates of real objects
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