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PARTICLE FILTER-BASED ESTIMATION OF ORBITAL PARAMETERS OF
VISUAL BINARY STARS WITH INCOMPLETE OBSERVATIONS

Rubén Claveŕıa1, Rene A. Mendez2, Marcos Orchard1

Resumen: Este trabajo aborda el ajuste
de órbitas desde una óptica Bayesiana,
aproximando la distribución a posteriori de
parámetros orbitales a través de Filtro de
Part́ıculas. Adicionalmente, se presenta un
esquema de imputación múltiple para incor-
porar mediciones parciales en la rutina de es-
timación.

Abstract: This work addresses the problem
of orbital estimation from a Bayesian point
of view, using the Particle Filter technique to
approximate the posterior distribution of or-
bital parameters. Additionally, we present a
multiple imputation scheme as a means to in-
clude partial measurements into the analysis.

In binary stars, mass estimation can be ac-
complished through the study of their orbital pa-
rameters –Kepler’s Third Law establishes a strict
mathematical relation between orbital period, orbit
size (semi-major axis) and the system’s total mass.
Astronomers frequently deal with the problem of
partial measurements (i.e., observations having one
component missing, either in (X,Y ) or (ρ, θ) rep-
resentation), which are often discarded. This work
presents a particle-filter-based method to perform
the estimation and uncertainty characterization of
orbital parameters in the context of partial measure-
ments. The proposed method uses a multiple impu-
tation strategy to cope with partial information. The
algorithm is tested on synthetic and real data.

Particle Filter (PF) is a family of Monte Carlo
techniques to address the filtering problem. This
problem consists of estimating the real state of a
system that: i) can be represented with a space-
state model that evolves over time (Eq. 1); and ii)
receive information about its current state through
noisy measurements at each time step t (Eq. 2). If
the system of interest satisfies conditions of linear-
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ity and gaussianity, the optimal solution is the well-
known Kalman Filter (Kalman 1960). Since most
systems do not comply with the aforementioned con-
ditions, sub-optimal approaches such as PF arise as
an interesting alternative (Candy 2009).

xt = f(xt−1, wt−1) (Evolution equation), (1)

zt = g(xt, vt) (Observation equation) (2)

In the equations above, state xt is related to the
past state value xt−1 and system noise wt−1 through
function f(·), whereas observation zt is a function
of current state xt and observation noise vt. PF is
based on the representation of the probability den-
sity function (p.d.f) of state xt by means of a set of

samples x
(i)
t with their respective weights w

(i)
t . At

each time step, weights must be updated in order to
incorporate the information provided by observation
zt:

w
(i)
t = w

(i)
t−1 ·

p(zt|x̃(i)t ) · p(x̃(i)t |x
(i)
t−1)

π(x̃
(i)
t |x̃

(i)
0:t−1, z1:t)

, (3)

In this work, we adopt the Artificial Evolution of Pa-
rameters approach (Liu 2001). The PF framework is
used to approximate the p.d.f. of orbital parameters
(not the state) of a binary star (P , T , e, a, ω, Ω, i).
Particles are forced to evolve according to a random
walk (Eq. 4) and the statistical characterization of
the Mean Square Error is used as a likelihood func-
tion (Eq. 5):

x
(i)
t+1 = x

(i)
t + ε

(i)
t , with εt ∼ N (0,Σ), (4)

Y(i)
t =

1

N

N∑
k=1

1

σ2
x(k)

[Xk−Xk,t,i
comp]2 +

1

σ2
y(k)

[Yk−Y k,t,i
comp]2,

(5)

where i, k index the particles and the epochs, respec-
tively. In Eq. 5, observations Xk (Yk) are compared
to the positions Xk,t,i

comp (Y k,t,i
comp) defined by particle

x
(i)
t at epoch k. It can be proven that, under certain

assumptions, Y(i)
t follows a Gamma distribution.

Since the vast majority of data-processing tech-
niques require complete data sets as an input, a
common technique to cope with missing data is to
fill in or impute plausible values. In this work, a
multiple imputation (MI) scheme is preferred over
the single imputation approach. MI replaces each
missing datum with a set of plausible values, which
represents the uncertainty about the right quantity
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TABLE 1

AVERAGE VALUE OF ESTIMATED
PARAMETERS

T P [yr] e a [arcsec] ω [rad] Ω [rad] i [rad]

Input
Parameters

0.2839 50.09 0.5923 7.5000 2.5703 0.7779 2.3829

Complete
data

0.2820
(0.0033)

50.4178
(0.5571)

0.5961
(0.0045)

7.5030
(0.0289)

2.5639
(0.0234)

0.7735
(0.0201)

2.3766
(0.0075)

Data
Discarding

0.2859
(0.0144)

49.8637
(2.3624)

0.5909
(0.0153)

7.4874
(0.1129)

2.5669
(0.0239)

0.7717
(0.0213)

2.3823
(0.0128)

Multiple
Imputations

0.2830
(0.0059)

50.2793
(0.9475)

0.5949
(0.0122)

7.5035
(0.0354)

2.5670
(0.0397)

0.7740
(0.0316)

2.3770
(0.0072)

(Rubin 2004). When performing MI, the most criti-
cal aspect to be considered is how the imputed val-
ues are obtained (i.e., the distribution from which
the imputed samples are drawn), and this aspect is
problem-dependent. In this work, we use the condi-
tional p.d.f. of orbital parameters xt as a proposal
distribution for imputed values.

The experiments carried out are described next.
Parameters of the well-known binary star Sirius were
used to generate synthetic data (values in Table 1),
with observation noise having standard deviation
σ = 0.075′′ for both X and Y axes. Three scenarios
were considered: i) Full data set is available (N = 11
measurements; Figure 2a). ii) Data Discarding (Fig.
2b): observations at epochs 10 and 11 (filled cir-
cles in the figure) are incomplete –only X is known–
and discarded from the analysis. 3) Multiple Impu-
tations (Fig. 2c): same data set as in the previous
point, but Multiple Imputation Particle Filter is car-
ried out in order to include partial information. Fi-
nally, the algorithm is applied to objects HU177 and
I669AB, whose data data is taken from (Tokovinin
2015). Table 1 displays the results obtained from a
series of 10 repetitions of the experiments described
previously (standard deviation in parentheses). Fig-
ure 1 shows an example of the estimated p.d.f. of
orbital parameters obtained by using the proposed
algorithm.
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Fig. 1. Marginal p.d.f. of parameters (T, P, e). (bar: real
value; continuous line: estimated p.d.f.)

Figure 2 shows a visual comparison of the results
obtained in the three scenarios (black line: refer-
ence orbit; gray line: orbit estimate). Figure 3 dis-
plays a visualization of the results of our method ap-
plied to real data (black: orbit obtained with tradi-
tional least-squares algorithm; gray: orbit obtained
with PF). Real observations are represented by cir-

cles, whereas imputed observations are represented
by dots. In Figure 2b the orbit estimate shows a cer-
tain degree of inconsistency with the reference orbit.

The contribution of this work is twofold: first,
it adds robust uncertainty characterization to the
problem of orbital parameters estimation; secondly,
it provides a strategy to cope with incomplete ob-
servations. Results on artificial data suggest that
the incorporation of incomplete observations can in-
crease the precision of the estimation without a no-
ticeable decrease in the accuracy. Future work in-
cludes the use of uncertainty characterization in the
planning of astronomical observation campaigns, in-
vestigating alternative convergence criteria for the
particle filter and formulating an adaptive evolution
noise.
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(a) Full Data Set
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(c) Imputations

Fig. 2. Orbit estimation in three scenarios.
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Fig. 3. Orbit estimates of real objects
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