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RESUMEN

Se investigan las propiedades de estabilidad magnetohidrodindmica (MHD) del modelo de Low
(1981) de una protuberancia solar. Se ha supuesto un campo magnético no uniforme a lo largo del
eje de la prominencia (By). Se usé un formalismo bidimensional basado en el Principio de Energia
de la MHD ideal (Bernstein et al. 1958). Se consideraron diferentes formas funcionales de Byx(A),
donde A es la componente axial del potencial vectorial. Ademds se tomaron en cuenta tanto el rango
de parimetros observados como algunos casos fuera de éste. Para campos axiales débiles y moderados,
el modelo de Low puede explicar también las oscilaciones horizontales reportadas con periodos cortos
hasta de 7 minutos. Tales oscilaciones son mantenidas principalmente por la fuerza de Lorentz. Inten-
sidades altas de By producen la aparicién de una severa inestabilidad que posiblemente pueda identifi-
carse con una inestabilidad macroscdpica de deriva. En los valores de los parametros fuera del rango
observado, el campo axial ocasiona un ligero debilitamiento de la inestabilidad con respecto al caso
cuando By es nulo. Sin embargo, la regién de estabilidad no se amplia considerablemente.

ABSTRACT

MHD-instability properties of the solar prominence model of Low (1981) assuming a non-
uniform magnetic field along the prominence axis (By) are investigated. We used a two-dimensional
formalism based on the Energy Principle of ideal MHD (Bernstein et al. 1958). Different functional
forms for By(A), where A is the axial component of the vector potential are considered. Observed
parameter ranges as well as several cases outside these ranges are taken into account. For weak and
moderate By, Low’s model can also explain the reported short-period horizontal oscillations with pe-
riods up to 7 minutes. Such oscillations are mainly sustained by the Lorentz force. Large intensities
of By can produce the onset of a severe instability which could be possibly identified with a macro-
scopic drift instability. For values of the parameters outside the observed range, By causes a slight
weakening of the instability with respect to the case with a vanishing By, however a considerable en-
largement of the stability region is not achieved.
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tion invariant in its longitudinal direction. Two-dimen-
sional MHD static equilibrium models of quiescent pro-
minences have been proposed by numerous authors
(e.g., see Dungey 1953; Kippenhahn and Schliiter 1957;
Lerche and Low 1980; Zweibel and Hundhausen 1982;
Osherovich 1985; Ballester and Priest 1987). However,
only a description of basic physical properties, like pres-
sure, mass density, magnetic field, is not sufficient to ex-
plain the stable existence of the prominence. In this
sense, the usefulness of an equilibrium model is deter-
mined above all by its stability. On the other hand, most
of the proposed models merely take into account the

1. INTRODUCTION

Quiescent prominences are remarkably stable plasma
structures in the solar corona. They are usually located
above the neutral line which separates polarities of the
vertical component of the bipolar magnetic field between
two sunspot regions. Possibly the most striking property
of solar prominences is that they are much colder and
denser than the surrounding corona by several orders of
magnitude. A magnetic field is thought to be the main
cause of the thermal isolation of the prominence plasma
from its hostile environment.

MHD-theoretical studies consider quiescent promi-
nences in mechanical equilibrium resulting from the bal-
ance of the Lorentz force, pressure gradients and the
force of external gravity. Moreover, the appearance of
the prominence resembling a very long vertical sheet al-
lows one to assume a two-dimensional plasma configura-

local internal magnetic field and ignore its connection
with the surrounding bipolar coronal field. In particular,
Low (1981) presented an analytical model for a finite-
size prominence fixed in a bipolar magnetic region which
is originated in photospheric layers. This model considers
the presence of a component of the magnetic field along
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the longitudinal axis of the prominence (Bx) and also
includes non-uniform temperature.

As noted above, stability is a fundamental requisite
for a realistic model. Due to the strongly inhomogeneous
structure of almost any equilibrium model, stability
studies for most of these configurations are up to now
rather scarce. Stability of models describing a boundless
prominence (i.e., without connection with the surround-
ing medium) has been analyzed (e.g., Brown 1958;
Anzer- 1968; Migliuolo 1982; Zweibel 1982). However,
these approaches used very restricted perturbation clas-
ses and special methods which are valid only for a spe-
cific type of equilibrium. Galindo Trejo (1987) has ex-
tensively investigated the linear stability of four bound-
less prominence equilibria (Menzel 1951; Dungey 1953;
Kippenhahn and Schliiter 1957; Lerche and Low 1980).
According to his results, all models are stable in the ob-
served parameter range and they are able to explain re-
ported stable oscillations in quiescent prominences in-
duced by perturbations emanating from the neighbor-
hood of a solar flare (Wiehr, Stellmacher, and Baltha-
sar 1984; Bashkirtsev and Mashnich 1984). The clas-
sical model of Kippenhahn and Schliiter is absolutely
stable (see Galindo Trejo and Schindler 1984); how-
ever, all other models are destabilized for parameters
outside the observed range.

Recently, Galindo Trejo (1989) has studied the
stability properties of the prominence model of Low
(1981). His analysis considers a two-dimensional for-
malism based on the Energy Principle of ideal MHD
(Bernstein et al. 1958; Hain, Liist, and Schliiter 1957).
In the frame of this model, the prominence carries out
stable horizontal oscillations with periods between 3
and 6 minutes. Such periods are consistent with re-
ported short-period oscillations in quiescent promi-
nences (Balthasar, Knolker, and Stellmacher 1986).
On the other hand, for parameters outside the observed
range, the equilibrium becomes unstable. The resulting
instability is driven exclusively by compressional ef-

fects. On the contrary, the Lorentz force is stabilizing -

but it is insufficient to accomplish a stable state. Gravity
can contribute. to the dynamic state through stabilizing
or destabilizing effects; however, its total influence on
the instability is relatively small. Uniform longitudinal
magnetic field was assumed in both parameter ranges.

The main aim of this paper is to extend the pre-
vious stability analysis of Galindo Trejo (1989), (here-
after, Paper I) for the prominence model of Low (1981)
by considering explicitly a non-uniform longitudinal
magnetic field which depends in general on the com-
ponent of the vector potential along the longitudinal
axis of the prominence. This dependence introduces
a selective shearing of the magnetic field lines. In the
following section, basic equations describing the MHD-
equilibrium and the stability theory are set up. General
results concerning stability properties of Low’s configu-
ration with a mon-uniform By are presented in §3. Fi-
nally. our conclusions are given in §4.

II. BASIC EQUATIONS

The static equilibrium of a magnetized two-dimen-
sional plasma, including uniform external gravity, is
described in the MHD-theory by means of the non-
linear elliptic equation (Low 1975; Schindler, Birn,
and Janicke 1983):

ad=—txZAG)  nig gy = pia, g B2 )

8r

where A = A(y,z)ey is the component of the vector po-
tential in the x-direction (which is the direction of align-
ment of the longitudinal axis of the prominence and x
is the Cartesian coordinate which isignorable);¢ defines
the external gravitational potential ¢ = gz, g being the
constant gravitational acceleration. The pressure func-
tion II(A, ¢) is only restricted by boundary conditions,
and by the requirement that the mass density p =
—(oI1/0 ¢) = —(9P/0¢) must remain positive. The mag-
netic field may be written as:

B =VA(y,z) x ez + Bz(A)e; . )

Usually one assumes a prominence plasma composed by
ionized hydrogen which satisfies the ideal gas equation
of state:

P =prT/m , 3

where k is Boltzmann constant, T the temperature and
m the proton mass. Note that the temperature function
T(A, ¢) must strictly be obtained from an additional
heat transfer equation. However, for the study of me-
chanical equilibrium T may be considered as an arbi-
trary function. Therefore, any two-dimensional equi-
librium model is univocally determined by prescribing
the functions P(A,¢), Bx(A), and appropriate boundary
conditions.

An equilibrium configuration may be achievable in
nature only if it is stable to small perturbations &(r, t).
The dynamic evolution of ¥(r,t) is described by the
linearized MHD-equation:

2
o 25 = F(glr,1) )

where F is the force density (hermitian) operator:

F(¢) = ﬁ(VXQ) xQ -~ éBx(VxQH

+ V[TPV- £+ (£-V)P|+ V- (p£)V4 , (5)

© Universidad Nacional Auténoma de México * Provided by the NASA Astrophysics Data System



.47G

1989RMWKAA. . 17. .

THE INSTABILITY OF A QUIESCENT PROMINENCE 49

and Q=V X(§ X B). An adiabatic energy law is assumed,

and T denotes the ratio of specific heats. Since time
does not appear explicitly in F one can assume:

£(r,t) = £(r) exp(iwt) . (6)

Inserting £(r, t) in equation (4), we obtain the generalized
eigenvalue problem:

-p?E(x) =F(E(r) - @)

The solution of equation (7) with appropriate boundary
conditions will lead to the solution of the stability pro-
blem. According to Bernstein ez al. (1958), if w? is po-
sitive, the amplitude of the perturbatxon oscillates and
the system is stable. On the contrary, if w? becomes ne-
gative, the amplitude of the perturbation grows with
time and the system becomes unstable. Due to the strong
inhomogeneity of most of the equilibrium configura-
tions, the solution of equation (7) represents a formi-
dable mathematical task. However, another convenient
alternative to study the linear stability of MHD-equili-
bria is to use the Energy Principle of ideal MHD (Berns-
tein et al 1958; Hain et al. 1957). According to this
approach, the stability state of an equilibrium configu-
ration is determined by the behavior of the change in
potential energy 8W resulting in applying a small per-
turbation £ to the system. Explicity §W is given by
(Bernstein et al. 1958):

wiee)=- 3 [ Qe ®)

ie.,
wiee) - 3 [{L 1ar -
’%,W"B) - (Qx€') +TP|V - £ +
L (€ VPV € — (£ V)V - (,,Q} S )

The integral is taken over the volume of the system. We
have used rigid boundary conditions

(¢!

= pIasma boundary

)

on the y, z-plane. The complex conjugate ‘g’ appears in
equations (8) and (9) since general complex perturba-
tions are allowed. Therefore, stability is achieved if the
energy functional 8W is positive for all possible perturba-
tions which satisfy the imposed boundary conditions.
On the other hand, if there exists a perturbation which
yields a negative §W, then the equilibrium configuration

is unstable. Obviously, the MHD energy principle repre-
sents a necessary and sufficient criterion for stability.

In practice, the determination of the stability state of
an equilibrium is carried out by calculating the sign of
the minimum of 8W. The minimization of 6W is per-
formed by using a positive definite normalization con-
dition on £ in order to avoid the trivial solution. In our
case we choose the condition

;/p|_£_|2d3r =1

so that the Euler-Lagrange equation of the variational
principle:

5[6W(§,§‘) + A%/p]élzdsr] =0, (10)

with A = —w?, is precisely given by the elgenvalue equa-
tion (7). Therefore the minimum eigenvalue w? equals

the minimum of 8W (i.e., wi = Min §W) and stable sys-
tems are characterized by a positive minimum of §W.

In order to analyze the stability properties of two-
dimensional equilibria, we will consider the most gen-
eral three-dimensional, complex perturbation given by:

£lr) = [Ez(%z)ez_ + zl(y,z)] exp(il_cz)_

= [Bmaea+Btsmtes + G o). (11)

Note that periodic boundary conditions for £ are assumed
along the x-axis since equilibrium does not depend on x.
Substituting ¢ from equation (11) into 6W, using the
equilibrium equation (1) and integrating by parts, one
obtains the specialized form of the potential energy
functional W for two-dimensional equilibria (see Schin-
dler et al. 1983):

1 1 2 M | |,
2/{“ [|V_La| 41rm la|

W(LE) =

1 ~ -~
+ 4 | BL-Vike —'BzV.L'_{_,__I2 +
+ k| B, - &BLP +
4ir =1

2

14
+TP [‘ * TP(as/29)

|v-¢* -
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P . 2
@oran VAN

dp 2
TaglhVatt
U § PPy 1, 2
+ 2kIm [;(Vlaxe,)-(&‘i‘_ -§B;) - -‘—‘-AAfza -
1 ~ P
- E;B‘AA(QL X Q)-e.] }dsr . (12)

where 'V, = e,% + e,‘-:;,

a = —g-‘-*le,B_L = VAxe:s. '

The x-integration is carried out over one period. As ex-
plained above, we have considered rigid boundary condi-
tions for § on the y, z-plane.

These conditions decouple the corona from the pho-
tosphere and they adequately simulate the magnetic line
tying at the lower edge of the prominence region. For
the other three edges, one formally looks for displace-
ments which exactly vanish there, where then one as-
sumes the existence of rigid, ideal conducting walls.
Therefore, for a given equilibrium model described by
the functions P, By, and the solution A, the minimiza-
tion of 6W will lead to definitive stability statements.

III. STABILITY ANALYSIS OF LOW’S MODEL
CONSIDERING A NON-UNIFORM AXIAL MAGNETIC FIELD

Before we present our stability analysis, it is conve-
nient to write all used variables in an adimensional form,
namely:

§ = r/ho, A = A/(hoBo), P = P/(B}/8x),

B = B/Bo, Ji = Je/(cDo/avhe), T = T/Ty,
3 = #/lhos)s 7 = p/(BE/8rhog)

E=¢/ho,k = kho,0® = w?/(9/ho),
oW = ew/BR)

where Jx = —AA is the current density along the x-axis,
B, a typical value of magnetic field strength, hg a char-
acteristic ‘length determining the prominence structure
and T, a typical temperature. In terms of dimensionless
variables the basic functions defining the equilibrium
model of Low (1981) are given by:

+ exp(f1 — 2) - B, (13)
B. = ¢(A) , (14)
Y
~ U
A= "'{ 2oz + OF } as)
where

U=gz + (?_21)2 + 62"&2,=,12_?'f’ a=1+%

and G is an arbitrary function. The exponential term in
equation (13) provides a hydrostatic background corona.
The perpendicular field By = VA X ey is constructed by
superposing the field generated by the prominence cur-
rent above the base of the corona to a bipolar potential
field. Thus 7 fixes the length scale of the potential field
produced by a line current at y = 0, z = —. Besides, z,
locates the height above the origin where the symmetry
axis of the current density of the prominence is situated.
From this axis outwards the current density decreases
over a characteristic length &. Figure 1 displays two
examples of typical configurations of the magnetic field
B (defined as A = const. contours). For fixed v, z; may
vary between —y and 7. Closed loops arise as soon as
z, > 7v/9 otherwise the field lines are open. The case
z, = —y corresponds to a_potential field. Moreover, ne-
glecting the term e(?1 — 2), the case z; = leads again
to a global potential field except at the point y = 0,
z = v where a singular line current flows.

In order to improve our knowledge about the stabili-
ty or instability mechanism, we consider the separation
of the energy contributions to the functional 6Wp, ;,:

Wnin(E,inr Enin) = SM +6K +6C = 3}, (16)

where M, 6K and 8G express the contribution of the
Lorentz force, pressure gradients, and gravitational force
to the global potential energy associated with the mini-
mizing displacement &, respectively (details can be
found in Galindo Trejo 1987).

The minimization of 6W taking into account the gen-
eral displacement (11) was carried out by using the va-
riational method of finite elements (see e.g., Zienkie-
wicz 1977). This method deals with displacements de-
fined locally on each element of the discretized region.
Any single displacement is approximated by means of
spline functions which depend on several free param-
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Fig. 1. Magnetic field lines of the prominence model of Low (1981):a) v =1, 21 =0.9;h)v=1, 7j, =-0.3.

eters. The variation process allows us to determine these
parameters so that the minimizing mode &,;, is piece-
wise obtained. The quality of the approximation depends
on only the discretization mesh. In the case of a singu-
larity, one can utilize an improved mesh with smaller
elements about the singular point. A computer code for
numerical minimization was extensively tested by apply-
ing it to several equilibria whose dynamic tehavior could
be studied by other analytical methods (e.g., Alfvén
waves in an homogeneous plasma, plane current sheets
and acoustic gravity waves). We used a maximum of 32
triangular elements in each mesh of the plasma region on
the y, z-plane, and we have tried different distributions
of the elements (for details see Galindo Trejo 1987).
Previously, Galindo Trejo (1989) investigated the
prominence model of Low (1981) by considering a uni-
form longitudinal magnetic field By. In the case of ins-
tability, low intensities of By lead to a slight weakening
of the instability. However, a further increase of the
strength of By yields a drastic magnification of the ins-

L

tability. It is found that instabilities are driven only by
compressional effects so that we are possibly dealing
with macroscopic drift instabilities. It is interesting to
note that the stabilizing effect obtained for low inten-
sities of By seems to be consistent with the well known
magnetic shear stabilization of drift instabilities (see e.g.,
Mikhailovskii 1967). On the other hand, the abrupt be-
havior of the instability seems to arise exclusively from
the way by which Low’s model introduces By in equa-
tion (13). Depending on the magnitude of By, the initial
pressure ean be diminished so that the total pressure
P(y, z) becomes negative at isolated regions or even on
the whole y, z-plane. Of course, this situation merely
means that such a longitudinal magnetic field cannot
stably coexist with the initial plasma pressure.

For the parameter ranges which are observed in solar
quiescent prominences, the reduction of the intensity of
By can effectively produce a stabilization of the equi-
librium state. Although such a stabilization happens for
intensities of By smaller than the mean value within
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Fig. 2. Smallest value of c.f;,’ as a function of ¢ (maximum strength of the axial magnetic field: ﬁx = ¢/cosh? /I.) for observed purameters:
a)Y=6,2=10; y=0.0166,2, =0.0166,-—k =10,----k=50:b) Y= 24,Z=70;7=0.0035,Z, =0.0035,—k=0.06,----k = 0.017.

prominences, our results may yet be applicable to the
prominence class having a supporting magnetic field
almost perpendicular to the longitudinal axis (Leroy
1978).

This paper provides an extension of our previous
analysis of the model of Low (1981) by taking into ac-
count a non-uniform By(A). Note that a Bx(A) pro-

instability regions. We have assumed several functional
forms of Byx(A) and performed the minimization of
8W. In doing so, we have considered parameter ranges
reported for quiescent prominences and also other
parameters outside the observed ranges.

We have obtained strongly increasing instability for
the following functions describing By (A):

vides a selective shearing to the field lines of Bj. The

first purpose of our study was to reduce the rather wide A1 /A, 1/A%, e “‘A, e“i, e’fi, In A2, 1/In A?, cosA.

TABLE 1

STABILITY PROPERTIES OF THE PROMINENGE FOR LOW’S (1981) MODEL CONSIDERING
A LONGITUDINAL MAGNETIC FIELD B, (A) = ¢/cosh?A *

Tp 72 P
(°K) 5 k Y 2 8y ¢ 2. (1073s7Y)  (min)
7x10° 0.0035 0.017 24. 70.  0.0035 0.3 0.2669 2.9631 5.624
7x103 0.0035 0.017 24. .70. 0.0035 1.0 0.2570 2.9079 5.731
7x103 0.0035 0.017 24. 70.  0.0035 1.2 0.1643 2.3247 7.169
7x103 0.0035 0.060 24. 70. 0.0035 0.3 0.3478 3.3825 4.927
7x103 0.0035 0.060 24. 70. 0.0035 1.0 0.3281 3.2852 5.073
7x103 0.0035 0.060 24. 70. 0.0035 1.2 0.2068 2.6086 6.389
5x10% 0.0166 10.00 6. 10. 0.0166 0.3 1.6349 2.7504 6.059
5x10% 0.0166 10.00 6. 10. 0.0166 1.0 2.1361 3.1438 5.301
5x104 0.0166 10.00 6. 10.  0.0166 1.2 2.1860 3.1803 5.240
5x10% 0.0166 50.00 6. 10. 0.0166 0.3 2.2556 3.2305 5.159
5x10% 0.0166 50.00 6. 10. 0.0166 1.0 2.6299 3.4883 4.777
5x10% 0.0166 50.00 6. 10. 0.0166 1.2 2.7734 3.5822 4.652

a. Frequency vy = (g/ ho)l/ 2%1/27 and period P of stable oscillations for the parameter range observed in
quiescent prominences. :
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TABLE 2
STABILITY PROPERTIES OF THE PROMINENCE FOR LOW’S (1981) MODEL WITH UNIFORM
LONGITUDINAL FIELD B, ®

Tp . 141 P
CK) ¥ k Y 2 N B @ (1073%71)  (min)
7x10% 0.0035 0.017 24. 70. 0.0035 0.001 0.2671 2.9645 5.620
7x103 0.0035 0.06 24. 70. 0.0035 0.001 0.3487 3.3868 4.920
5x10% 0.0166 10. 6. 10. 0.0166 0.020 1.5416 2.6708 6.240
5x10% 0.0166 50. 6. 10. 0.0168 0.020 5.2060 4.9080 3.390

a. Frequency vy = (g/ ho)l/ 35, /2% and period P of stable oscillations for the parameter range observed in
quiescent prominences.

On the other hand, the initial (ﬁx =) instability is now In the case of observed parameters, these last forms lead
slightly weakened by the functional forms of Byx(A): to stable oscillations. Notice that such a cosh-class is the
. - 32 o: only one which shows simultaneously symmetry, no
1/coshA, 1/cosh® A, 1/cosh® A, 1/cosh™ A. oscillations, a finite value at the origin and a moderately
R A T T T 10
e . - - - - N .
§‘L - -~ - -« -— - -
- - -— -— -— - -
- - — o -« -
- - — -— -— L d
- —— — — -— - -
e e -— -~ - %
B - /// -— bl e -
-~ / — — -— o~ -
« / -~ — — Ll -
- / - — - L b
- o - - -~ -
. p — -— -~ Pd L4
* -— - - - - -
. - -— - - 4
— « - » . . . - 5
. N
. . Y
A
1 I I 0 Re fx
-3.0 -1.5 0 A 15 3.0

Y
an 3. Minimizing mode for observed parameters assuming an .xxlal magnetic fleld Bx = 1/cosh’A k= 20, Y= 6 Z=10; v =0.0166,
zl = 0.0166, w,* = 2.3119. ) Resl, b) Resx such that ImaxResl 1/ Imax Rcsxl =515 Rez >0,---- Resx <0,. Retx—O
(This convention w ill be used in what follows, to visualize the longltudlnal component of the mode)
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decreasing behavior. Since the behavior of w,? remains
practically the same for all members of this cosh-class,
we have chosen the functional form BX(A) §‘/cosh2A
(where ¢ is a positive constant) in order to investigate in
detail the effect of a non-uniform By on the stability
state of Low’s equilibrium.

As an illustration of the influence of a variable By
on the prominence equilibrium, we have considered
the same observed parameter sets used in Paper I. Fig-
ures 2z and 2b show w2 as a function of parameter
¢ which determines the maximum intensity of By.
Considering longitudinal fields from weak to moderate
(¢ ~v 1.2), the prominence carries out stable oscillations
practically with constant frequency. Table 1 summari-
zes the obtained frequencies and periods taking into
account some values of { which correspond to the pla-
teau of the curves. As a comparison, the frequencies
obtained in Paper I for uniform By are shown in Table

A T T T 70

Re e e e e e e
=1

. . .
e e . e e
. e . ..
e . . .
. e . .

v e e . . A
. A
. * . - - - -
e e e e e e
. - -— - - .
Ve e e e e
e e e e e
e e e e e e
¢ e ee— e e e
L ¢ ¢ eme— — o+~ + {35
¢t e — o+ e
¢ v e e e e .
¢ e e e e e e
c e e e e e
e e e e e e
e e e e e e e
. e . . e
r— - - Ad - . —
e e e e e e .
e e e e .

. .- e e s
. . s e
e e e e e e
e e 0 e .
e v e e e 4 e
] ] ] 0
-12 -6 (o] 9 6 2

2. We conclude that the applied non-uniform By does
not change substantially the period of oscillation for
weak and moderate intensities. However, as soon as ¢
exceeds a critical value (usually between 1.2 and 1.9),
the equilibrium is rapidly destabilized with extremely
large growth rate. The cause of this abrupt behavior is
the same one which was briefly discussed for the case
of uniform By. It is interesting to note that in the case
of stable oscillations the main energy contribution ari-
ses from the electromagnetic fields. Compressional ef-
fects are also stabilizing. Although gravity is destabiliz-
ing (6G < 0), its energy contribution is very small (i.e.,
186Gl << 8M). On the other hand, instability is driven
mainly by compressional effects.

Figure 3 shows a typical mmnmzmg mode for the case
of a prominence with T=7 x 10® °K (Landman 1983).
Figure 3a exhibits Reg| as a function of position onthe

y, z-plane. The amplitude of Re§| is much larger than

Fw 4. Minimizing mode for observed parameters assuming an axml magnetic fleld Bx = l/cosh’A k=0. 06, Y= 24, 7= 70;v = 0.0035,
=0.0035, w,? =0.3281.4a) Resl,b) ReEx such that ImaxResl 1/ Imax Ret |~ 1.2,
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B Ty Y ey Y that of Rek, (Figure 3b). Therefore, the oscillations
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Fig. 5. Smallest value of J),’ as a function of the parameter il
assuming an axial magnetic field B, = 1/cosh®A and k = 1,
Y=6,2=10,y=1,

A T T T ‘0
SN
K\\\ VARV B
| — \\\ / — 12
— NN\ /A .
=3V 1722
=Ny Lo =
A
~ ~
_\\/////_5
v X f///f
v YV o
PR //,/0
P f/,o/'\
-k'/..a'\
P /S e e
A S S e e
_u.—-"/"‘.'—
i | 1 ! 0
- - A
3.0 1.5 OY1.5 3.0

have nearly horizontal polarization which is perpendic-
ular to the longitudinal axis and their largest amplitudes
are attained in the upper portion of the prominence
region. On the contrary, Figure 4 shows the mini-
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I .
\

0
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Fig. 7. Minimizing mode for observed parameters assuming an axial magnetic field ﬁx = 2/cosh‘A: k= 10, Y= 6, i= 10,y =0.0166,
2, =0.0166, w,® = -5.5503.a) Rek, ; b) Rek, such that imaxRet, |/ Imax Reg, | ~5.8.
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mizing mode for a prominence with T =5 x 10* °K
(Zhang and Fang 1987; Kundu, Melozzi, and Shevga-
onkar 1986). On the y, z-plane, the oscillations are
concentrated around the center of the plasma region

(Figure 4q). However, the amplitude of ReEJ is of -

the same order of magnitude than that of ReE (Fig-
ure 4b). Hence, the polarization of oscﬂlatlon is
horizontal, in planes which are parallel to the Sun’s
surface. '

Large-scale oscillations of quiescent prominences
are often reported after a major flare and they are
predominantly horizontal. Wiehr et al. (1984) and Bal-
thasar et al. (1986) have detected short-period oscil-
lations with the period range 3—6.5 min. Thus, we
conclude that Low’s model, assuming a non-uniform
axial magnetic field, may also explain such short-pe-
riod oscillations with periods less than 7 minutes.
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Fig. 8. Minimizing mode assuming an axial magnetic field ﬁx = 1/cosh? .&: k= 1, Y= 6, Z

a) Re_%l; b) Re%x such that ImaxRe_gJ_ I/ Imax Regx 1=~ 0.63.

In order to illustrate stability properties in other
parameter ranges which may be relevant for plasma
structures in other stellar atmospheres, we have_again
considered an equilibrium in the region with Y = 6
and Z = 10. Figure 5 shows w{ as a function of the
parameter z, in the case of a moderate wavenumber,
v =1 and axml field By = 1/cosh®A. The resulting be-
havior of w;? resembles that of Figure Sa of Paper I
which assumes no axial field. In this case instability
prevails again over most of the z, interval but, as ex-
pected, the instability is now slightly weakened rela-
txve to the case By = 0. Besides the minimum values of
w,? in the regular z, -interval is shifted to z; = —0.55.
However, a substantial enlargement of the stability re-
gion is not found. Instability is again driven only by
pressure forces. Gravity and the Lorentz force are sta-
bilizing but the contribution of the former is much

—23.4491.

=10,y=1,2, = -03, w,? =
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Fig. 9. Minimizing mode assuming an axial magnetic field B, = 1/cosh?A: k=1,Y=6,Z=10,7=0.75, 7, = —0.55, &,* = —26.0063.

a) Re_%_l; b) Refgx such that ImaxReZtrL 1/ Imax Re%x I~ 1.

smaller than that of the latter (16K !> 8M >> §G).
On the other hand, the inadequate curvature of mag-
netic field lines is apparently not enough to cause
electromagnetic flute or ballooning instability.

When the wavenumber k is allowed to vary, the
preceding qualitative behavior of w;* remains again
practically unchanged. Figure § illustrates the rather
weak dependence of 0312 on k by considering ﬁx =
1/cosh?A and the z,-value at which the regular min-
imum in the former case (Figure 5) is attained. The
energy contributions of gas pressure gradients, the
Lorentz force and gravity keep nearly the same rela-
tion between them compared with that of the former
case. The dependence of k of such contributions is
also relatively weak.

To exemplify the typical appearance of minimizing
modes in the presence of a non-uniform axial field, we
will briefly present them for some specific situations.

As shown above in the case of observed parameter
ranges, an increase of the parameter { can cause an
abrupt destabilization of the equilibrium. Resulting
instability is exclusively driven by pressure gradients.
Figures 7a and 7b illustrate the unstable minimizing
mode for the case with { = 2. The amplitude of Ref|
is in general much larger than that of Refy. The fluid
elements move on the y, z-plane along the magnetic
field lines only in the lower region (neutral points are
located at zo = 0.0166 and zo, = 0.0399). On the other
hand, Ref) attains its largest amplitudes in the upper
regions, showing a rather vertical pattern.

The effect of a non-uniform longitudinal field on
the instability is dramatically exhibited in Figures 8a
and 8b for the case ¥ = 1, z; = —0.3 (see Figure 15).
Compared with Figure 10a of Paper I (case with By =
0), Re§| shows now a relatively complicated sheared
pattern. However, the amplitude of Ref, is usually

© Universidad Nacional Auténoma de México * Provided by the NASA Astrophysics Data System



.47G

1989RMWKAA. . 17. .

58 J. GALINDO TREJO

larger than that of Re_é_i. Like the case without By,
this instability is also driven solely by compressional ef-
fects. If one takesz, = —0.55 (where w,® attains its
regular minimum, see Figure 5), the orientation of both

components of Rei;'A does not substantially change, but
the amplitude of Re&y can be even much larger than that
of Re§|. Moreover, such a relation between both ampli-
tudes can be inverted when one considers larger wave-
numbers.

Finally, Figures 9a and 9b display an example of the
specially complex pattern of an unstable minimizing
mode. We have also assumed By = 1/cosh?A. The mag-
netic field lines on the y, z-plane are similar to those of
Figure 1b. Hence, fluid elements on this plane move
along the field lines only in the upper region. On the
contrary, in the lower half of the prominence region,
two complicated vortices appear which resemble a tur-
bulent pattern. The amplitudes of both components of
Reé are of the same order of magnitude so that the glob-
al motion of the fluid elements may be very complex.
This instability is driven once again only by compres-
sional effects which cancel completely the weak stabiliz-
ing effects of the Lorentz force and gravity.

IV. CONCLUSIONS

In this paper, we have analyzed the stability proper-
ties of the two-dimensional prominence model of Low
(1981) by taking into account explicitly a non-uniform
magnetic field By along the longitudinal axis of the pro-
minence. We use a two-dimensional stability formalism
based on the ideal MHD-Energy Principle of Bernstein
et al. (1958) and Hain et al. (1957). We have considered
several functional forms for By. A special class of func-
tional forms was found which leads to a stable behavior
of the equilibrium for observed parameter ranges. With-
in the frame of the model of Low, detected short-period
oscillations in quiescent prominences seem to be ade-
quately described by assuming moderate intensity of By.
Obtained stable oscillations are mainly sustained by the
electromagnetic force. On the other hand, larger inten-
sities of By can produce the onset of an instability which
is driven by compressional effects. Using the axial field
By = 1/cosh? A we have studied its influence on the ins-
tability in parameter ranges outside the observed ones in
detail. Although By causes a slight weakening of the ins-
tability with respect to the case with Bx =0, a consider-
able enlargement of the stability region is not found.

The growth rate remains relatively unchanged when
wavenumber k varies. In any case, resulting instabilities
are driven exclusively by pressure gradients. This sug-
gests that we are possibly dealing with macroscopic drift
instabilities. Moreover, the slight stabilization caused by
a non-uniform By(A) seems to be consistent with the
magnetic shear stabilization of drift instabilities. How-
ever, our approach cannot identify the resulting instabi-
lity more exactly.
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