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RESUMEN

Se presentan resultados analiticos sobre la estructura interna de chorros estelares estacionarios
como complemento a estudios numéricos. Se hace especial énfasis en las propiedades (forma, separa-
cion, etc.) de los choques internos en los chorros. El modelo es aplicable a chorros delgados y altamen-
te supersonicos con presion inical mayor a la del medio ambiente, que se mueven en un medio unifor-
me, Se presentan expresiones analiticas sencillas para los principales pardmetros del flujo, tales como
la distancia entre choques y la velocidad de choque. Se encuentra que la forma del choque incidente
es un arco de circunferencia que pasa por el punto de inyeccién. También, se muestra que la velocidad
de choque es siempre ~v 20 km s™ para choques radiativos con temperatura de equilibrio v 10* °K.
Este resultado es independiente de los pardmetros del chorro o los del medio ambiente.

ABSTRACT

We present the results of an analytic study of the internal structure of steady stellar jets as a
complement to previous numerical investigations. Special emphasis is made on the properties (shape,
separation, etc.) of the crossing-shocks within the jet. The model is restricted to initially underexpan-
ded, highly supersonic narrow jets moving into a uniform medium. Simple analytic expressions are
given for the main parameters of the flow, such as the distance between crossing-shocks and the shock
velocity. It is found that the shape of the incident shock is an arc of circumference passing through
the injection point.Also, we show that the shock velocity is always ~ 20 km s for radiative shocks
with equilibrium temperature of v 10* °K, a result which is independent of the parameters of the jet

as well as those of the ambient medium.
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L. INTRODUCTION

During the last few years, deep images in the vicinity
of young low-mass stars and Herbig-Haro objects have
revealed the presence of faint, line-emitting filamentary
structures closely related to them, These structures are
particularly evident in the Ha and [S II] lines.

Up to now, more than twenty young stellar objects
have been reported to have such associated line-emitting
filaments. The main observational characteristics of
these structures are compiled and discussed in a series of
recent review papers by Mundt (see for instance Mundt
1988 and references therein). Among their observational
properties we may distinguish: 1) projected length in the
range 0.02 — 0.5 pc; 2) length-to-width ratio v 10 —20;
3) electron densities v 500 — 2000 cm~3; 4) emission-
line spectrum similar to that of H-H objects, indicative
of shock-excitation with low shock velocities v 20 —
100 km s™'; 5) radial velocity of the emitting material

© Universidad Nacional Auténoma de México * Provided by the NASA Astrophysics Data System

with respect to the parent cloud of up to 400 km s™!,
with typical values in the range 50 — 100 km s™!.

In some cases (for instance R Mon, RCrA, HH57, HL
Tau and XZ Tau), these filamentary structures could
simply be the light emitted by, or reflected from, the
walls of cavities created by the sweeping action .of strong
stellar winds (Cant6, Sarmiento and Rodriguez 1986).
When viewed from certain positions the radiation from
these walls appears to the observer as elongated struc-
tures.

However, most authors interpret them as jets of super-
sonic material, collimated in the immediate vicinity of
stars, and ramming into the molecular cloud. Their
characteristic emission line spectrum and the knotty
morphology observed in some of them (in particular in
HH34—IRS; Reipurth er al. 1986, Mundt 1986; Raga
and Mateo 1988; Biihrke, Mundt and Ray 1988) are
explained in terms of internal shocks along the jet,
similar to those seen in laboratory experiments.

65



. 65C

1989RMWKAA. . 17. .

66 J. CANTO, A.C. RAGA AND L. BINETTE

The flow pattern produced by a supersonic jet run-
ning into the interstellar medium can be divided into
three basic regions (Blandford and Rees 1974): the jet
itself;; the working surface (that is, the region where the
jet collides with the ambient medium); and the cocoon,
which engulfs the jet and is formed by the backward
movement of the shocked jet material.

The structure of the working surface is unsteady
and very complex; thus, it can only be studied in detail
through numerical simulations such as those performed
by Norman et al. (1982), Tenorio-Tagle, Rozyczka and
Canté (1986), Tenorio-Tagle and Rozyczka (1988),
Raga (1989), and Blondin, Kénigl and Fryxell (1989).
The main body of the jet, on the other hand, can be re-
garded as steady except near the working surface (Falle,
Innes and Wilson 1987; Tenorio-Tagle and Rozyczka
1988). This, of course, provided that the boundary of
the jet is not subject to pressure and cross-section per-
turbations due, for instance, to Kelvin-Helmholtz ins-
tabilities. The effects of such instabilities on the struc-
ture of the jet have been the subject of several studies
(e.g., Norman et al. 1982; Cohn 1983; Payne and Cohn
1985; Ferrari, Trussoni and Zaninetti 1981; Silvestro
et al. 1987), although laboratory experiments indicate
that K—H instabilities are not excited for high enough
(> 4000) Reynold’s numbers (Crighton 1981).

The structure of the steady part of the jet in the pre-
sence of a non-uniform external medium has been
studied in a series of very stimulating papers by Sanders
(1983), Falle and Wilson (1985), Wilson and Falle
(1985), Wilson (1987a,b), and Falle et al. (1987). They
find (as first predicted by Prandtl 1907) that the jet
develops a chain of steady crossing-shock patterns of
internal shock waves associated with variations in its
width. The distance between two consecutive crossing-
shocks is roughly the Mach number of the jet times its
width. Each of these patterns consists of an incident
conical shock which starts to develop near the boundary
of the jet and propagates inwards to the axis; and a re-
flected shock which runs from the axis to the boundary.
An important property of the incident shocks is that
they recollimate the jet since the flow is turned towards
the axis upon passing through these shocks. This re-
confining mechanism allows the jet to travel long distan-
ces until it is destroyed by the turbulent boundary layer,
becoming wholly subsonic and mixing with the interstel-
lar medium.

So far, the studies of the detailed structure of these
crossing-shocks within steady jets have been performed
by the direct numerical integration of the gas dynamics
equations. Although this procedure has the benefit of
allowing the study of the phenomenon without making
any gross approximation, it has the limitation that it is
sometimes rather difficult to reach general conclusions
or to extend the results to conditions other than those
assumed in the calculations.

In this paper we present the results of an analytic
study of the internal structure of steady jets, as a com-
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Fig. 1. Sketch of the first crossing-shock within an underex-
panded jet. Initially the jet expands freely with an opening
angle a until its pressure falls below the pressure P, of the
ambient medium. Beyond this point the jet becomes recon-
fined by an incident conical shock. The flow is then turned
along the axis through a reflected conical shock.

plement to previous numerical works. Special emphasis
is made on the properties (shape, separation, etc.) of the
crossing-shocks. In order to make the problem solvable
by analytic methods, we will restrict ourselves to initial-
ly underexpanded (jet pressure greater_than ambient
pressure) and highly supersonic narrow jets moving into
a uniform medium. In this case, the internal crossing-
shocks are produced as the jet tries to match its pressure
with that of the ambient medium.

II. THE MODEL
a) Basic Equations

Consider the steady part of a highly underexpanded
and highly supersonic jet moving into a uniform medium.
Let Vi, P§ and ¢ be the initial velocity, pressure and
(adiabatic) sound speed of the jet; and P, the pressure
of the surrounding medium. The jet has cylindrical
symmetry; let x and y be the distances along and per-
pendicular to the axis of the jet respectively. The origin
is the injection point (see Figure 1).

As the underexpanded jet comes out into the lower
pressure medium, it first undergoes a Prandtl-Meyer ex-
pansion to decrease its pressure. The jet boundary ex-
pands and a rarefaction wave propagates through the
body of the jet towards the symmetry axis. The outer
layer of the jet expands laterally with a constant maxi-
mum velocity given by

_ 2(1_")0:9
Um— (1_1) ] ’ (1)

with v the (constant) ratio of specific heats, and

s ()7 ®
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The sudden lateral expansion of the jet causes a
rapid decrease in pressure in the flow. Once the pressure
gradients become negligible, there is an absence of forces
acting on the flow, and there will be no redistribution of
mass. Hence the density profile will remain self-similar,
scaling simply as 1/R?; where R is the distance to the in-
jection point. The density distribution is thus determined
near the origin of the jet, where pressure forces are im-
portant, and remains frozen beyond this point. Thus, the
density distribution depends on the injection conditions
and can only be found by solving the complete gas dy-
namic equations. It is impossible to find an exact analytic
solution to the problem for arbitrary (and highly uncer-
tain) initial conditions. In view of this limitation, we
adopt the simplest assumption, i.e., that the density dis-
tributions is only a function of R, and is of the form

HB= 3 &)

where A is a constant. In order to relate A to the initial
conditions of the jet, we will adopt the following approxi-
mations. First, we will assume that the jet retains its
bulk velocity, despite the downstream accelaration re-
sulting from its rapid decrease in pressure. This assump-
tion is valid for highly supersonic jets. Second, we will
assume that the jet expands laterally at an opening an-
gle a (see Figure 1) given by

sina = Um _ (1-x) 1 , 4)

where Mj° is the jet’s Mach number at injection.

Assuming further that the velocity vector is directed
radially away from the injection point, equation (3) can
be rewritten as

M;:
4B = ) )

where Mj is the mass loss rate in the jet.
As mentioned above, the pressure decreases very ra-
pidly along the jet (see the Appendix)

Pj~p]~ R™? = R™193 4 = 5/3 , 6)

for an adiabatic expansion. Therefore, the internal pres-
sure of the free expanding jet will eventually fall below
the pressure Py of the ambient medium. At this point,
the jet will become reconfined by the stronger external
pressure. Since the Mach number of the jet increases
with distance from the injection point

)]

M~ p;(‘v-l)/z ~ RO = RY3 . = 5/3

the reconfinement generates an internal shock (the inci-
dent shock in the standard nomenclature; see Figure 1).
Behind this shock the pressure of the shocked flow near-
ly matches the pressure of the ambient medium and the
shock remains steady at a fixed position (see equations
(8) and (9)). The flow continuously passing through the
shock is turned towards the axis.

The locus of this shock (strictly speaking, the locus
of the intersection of this shock, which is a surface, with
a plane containing the symmetry axis) can be found
from the condition of pressure balance

iV + PoE = B0, ®)

where € is a parameter of order unity ( = 2/(y + 1) if
the shock is adiabatic; == 1 if the shock is radiative), Vi
is the component of the velocity of the jet normal to the
shock, and PcE is the centrifugal pressure exerted by the
shocked flow (see Cant6 1980 for details concerning this
pressure). Equation (8) assumes the shock to be strong.

Since we are interested in highly supersonic jets, the
angle o (see equation (4)) is expected to be small and
the shock to be rather elongated. Thus, the shocked ma-
terial will move nearly parallel to the axis of the jet. In
this case, the centrifugal pressure is also expected to be
small (compared with the other terms in equation (8)).
Neglecting the centrifugal pressure, equation (8) re-
duces to

e1piVh = Py . )

Let Rg(8) be the locus of the incident shock; where 8
is the angle to the symmetry axis measured counter-
clockwise from the axis (see Figure 1). Then,

. R
Vin = V§ m—sk'?—)m ) (10)

where R's & dRg/df. Substitution of equations (5) and
(10) in equation (9) yields

quVj" 1
" 2x(1-cosa) (R + RY)

(11

Defining

. 1/2
Ro =] MV} [2%(1 — cos a)ﬂ)] , (12)
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and

r = RS/RO s (13)

equation (11) can be written as
=1 , (14)

where r’' = dr/df. Equation (14) admits the general solu-
tion

r = sin(¢ + 0) . (15)

where ¢ is a constant. This solution represents two cir-
cumferences (one for each sign) of radius 1/2 and pas-
sing through the origin. One of them (the plus sign) is
centered at: X, = 1/2 sin¢g, yo = 1/2 cos ¢ while the
other (the minus sign) is centered at: xo = 1/2 sing,
Yo = —1/2 cos¢. The locus of the shock is given by
the arc with y > 0 of the minus sign solution and the
arc with y < 0 of the plus sign solution.

The constant ¢, which determines the solution, can
be estimated by demanding that the pressure in the jet
equals the outside pressure at the intersection between
the shock (equation 15) and the boundary of the jet
(6 = &). That is, we require that the shock starts at the
boundary of the jet. This is done in the Appendix and
the result is

., 1 K
¢ =a+ arcam[zr)l/2 Il?] . (16)

We note that the dependence of ¢ on the pressure ratio
Po /Pj° (see equation (4)) is rather weak since (y — 1)/2y
=0.2 for y=5/3.

For a hypersonic jet (Mj’ > 1)

o (v -1) 1 ] .
= a[l+ : 2 (ye)V2 (1 - *)] ’ an

where we have used equation (4).

It is easy to see from equation (15) that the shock in-
tersects the axis of the jet at a distance (in units of Ry)
from the injection point

a = singd

' (18)
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and that the maximum distance (also in units of Ry) be-
tween the shock and the axis is,

b = %(l — cos ¢) . (19)
The distance
. €1MjV,~° 1/2
aRo = "n¢[2‘l‘(l — cos a)Po] ’ (20)

with ¢ given by equation (16), thus represents the posi-
tion of the center of the first crossing -shock; while

21

CIMJ'V; ]1/2

%Ry = (1-cos 4) [2:(1 — cos a)Py

gives the maximum width of the shock.
For a highly supersonic jet, equations (20) and (21)
reduce to

MVe\ 1/
fPo) -

aRp =~ ie}/z(

«x

«[reb5 Al T ] ‘;/Q(sz‘go)lﬁ > (22)
and
ébRo - ge}/z(l_w;,%i)l/zg
~ 1= 1.,,('1—1)' 1 x r’ﬁ
(r-1) 7 G2~ A M
()" @

It is interesting to estimate the strength of the shock
close to the point where it meetsithe axis. First we see
from equation (15) that the shock makes an angle ¢ to
the axis at this point (6 = 0). Then, assuming that the
free-expanding material within the jet moves nearly
parallel to the axis for small 8, the shock velocity of
the incident shock at the first crossing-shock is

Vsi 2 VJ sin ¢ ; (24)
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which, for highly supersonic jets (using equations (4)
and (17)), reduces to

-1 1 3

M- R T ] g . (25

(-1 2

Vs &

Equation (25) implies that the shock velocity of the
incident shock (which measures the strength of the
shock) is independent of the jet’s velocity or its mass
loss rate and depends rather weakly, on the ratio

(Po/PP). It is mainly determined by the sound speed
(or temperature) of the jet at injection. This result
and its implications will be discussed below. *

To complete the description of the incident shock
near the point it meets the axis let us estimate its pre-
shock density and the properties of the flow behind it.
For this purpose we refer to Figure 2. The pre-incident-
shock density, can be obtained from equation (9), vis.,

o __ Po
Pr = quzl ’ (26)

with Vg given by equation (24) (or approximately by
equation (25)). If p; and V, are the density and velo-
city of the flow just behind the shock (see Figure 2),
and f is the angle between V, and the shock, it can be
shown that

n=vpet @7
with
tgf = & tgé (28)

INCIDENT SHOC’K/
P

Fig. 2. A scheme showing the flow parameters close to the
point where the crossing-shock intersects the axis. The inci-
dent flow moves nearly parallel to the axis and has density
pf and velocity V;. Behind the incident shock the density
is p, and the velocity V,. As the flow moves towards the
axis, the density increases up to a value pR just in front of
the reflected shock. The flow leaves this later shock moving
parallel to the axis, with density p,, velocity V, and pres-
sure P, greater than the ambient pressure.
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and

n = (29)

=
A
~o

where ] is the inverse of the compression factor across
the shock. For a strong adiabatic shock

o= . 30)

while for a strong radiative shock

2w

& = m H (31)

where

w=qu
Vst

and c is the adiabatic sound speed at the equilibrium
temperature behind the shock (= 10* °K).

As mentioned before, the basic role of the incident
shock is to recollimate the free-expanding flow within
the jet, turning it towards the axis. A conical converging
flow is thus formed behind the incident shock. As this
conical flow narrows down, a standing conical shock
(the reflected shock) forms with its vertex placed at the
point where the incident shock meets the axis. The flow
is refracted across this shock and a narrow cylindrical
stream or jet of shocked material moving along the axis
is formed. It will be shown below that the pressure of
this newly formed jet, coming out from the reflected
shock, is much higher (by a factor of ~v 20) than that
of the surroundings. Thus, it will expand again trying
to match its pressure with that of the ambient medium
giving rise to a new incident-reflected shock pair, and
so on. In this manner a series of standing crossing-
shock patterns is expected to be formed within the jet.

Let us know estimate the parameters of the reflected
shock. Near the jet’s axis, the reflected shock can be ap-
proximated as conical, with an opening angle, yR, de-
termined by the condition that the flow behind the shock
moves parallel to the axis (see Figure 2). The problem at
hand is nearly identical to that studied by Canté, Teno-
rio-Tagle and Rozyczka (1988) in the context of the
convergence of supersonic conical flows. We refer the
reader to this paper for further details. Let £g be the
inverse of the compression factor across the shock, then
the opening angle ¢ g is determined by

tgop = Ertg(d + ér - B) , (32)
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where we have used the fact that the flow converges to-
wards the axis with an angle of incidence ¢ — B. The
velocity V, of the stream coming out from the reflec-
ted shock is

Vi = W, eﬂ%:_;ﬂ , (33)
while its density and pressure are
= ?l; PR (34)
and
P = erspVin (35)

respectively. Where eg is a factor of order unity (see
equation (8)), &g is the inverse of the compression fac-
tor across the shock,

Vsg = Vi sin(¢ + ér — B) (36)

is the shock velocity, and plf is the pre-reflected-shock
density given approximately by

R~ [1 + "‘—‘:’—;—é@—) . 37N

The factor in brackets accounts for the increase in den-
sity due to the convergence of the stream towards the
axis.

b) Adiabatic Crossing-Shocks

In order to get some insight into the results and pro-
perties of the model just described, let us consider a
highly supersonic jet and assume that both, the incident
and the reflected shocks are strong and adiabatic (that is,
€1 = €R = 2/(y + 1) and that &1 = §g = (y — 1)/ (¥ +1)).

For v = 5/3 and a helium to hydrogen particle ratio
of 0.1, equation (25) yields

\Z 1/2 T° 1/2
[l—';i'l_—l]gsx.z(l-—o.u) (1+1—’fi) (W’—QF) , (38)

where X is the hydrogen fractional ionization (helium is
assumed neutral), and Tj° is the jet’s temperature at in-

jection. For T? = 10* °K, and nearly neutral flows (x

<< 1), Vg is expected to be in the range 9.4 kms™
(Po/Py 1) to 31.2 km s™ (Po/P{ << 1). The effect
of considering fully-ionized-hydrogen flows (x=1) is
to shift the velocity range to 13 — 43.1 kms™.

. The position of the crossing-shock (that is, its dis-
tance to the injection point) is given by equation (22).
If ny and AV, are the density and velocity dispersion of
the ambient medjum, then Py =nomgoAV,y? (my v 2my
the average mass per particle) and equation (22) can be
expressed as

aRp _ x
[——7—-—101 cm] = 213[1 + 03 (i-—_—n)]x
M’, 1/2 V,,ﬂ 1/2
x[ 10-8 My yr‘l] [100 km 0‘1] X
-2 Ave 11
no 0
X [W em—3 km 0‘1] (39

The particle density entering the incident shock fol-
lows from equations (26) and (38),

n3 avl? )
[cm_:’] = 19 uo[E] = 2.0 W X

x[l—o.'hc]-z [1+ %f]-l[lof’iK _l[kﬁ‘:{l]z | . (40)

The parameters of the flow behind the incident shock
are,

ny = 4nj , B = ¢/4 y i = VP . 41)

Regarding the reflected shock, we first notice that, if
&1 = &R equations (28) and (32) imply

ép =P8 = ) (42)

LR

and thus equation (36) reduces to
Vsr & Vising 2 Vsing = Vg . (43)

That is, the shock velocity of the reflected shock is ap-
proximately equal to the shock velocity of the incident
shock. Therefore, the entire crossing-shock is character-
ized by a single shock velocity, given by equation (38)
which is in the range 9.4 — 43.1 kms™!.
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The particle density, ng , entering the reflected
shock follows from equation (37)

ng & n1[1+ Qﬁ)] . (44)

Substitution of equations (41) and (42) in equa-
tion (44) yields

ng = 16n] (45)

with n] given by equation (40)

Assuming that the surface brightness (F) of a shock
is proportional to the pre-shock density, from equa-
tion (44) it follows that the reflected shock will domi-
nate the emission of the crossing-shock by a factor

F(rcﬂeet«l)

F(incident) ~ ~ 16 ' (46)

since the shock velocities for both shocks are expected
to be very similar (equation (43)).

The density and, most important, the pressure of the
stream coming out from the reflected shock, can be
found from equations (34) and (35). They are

= 64n} , (47)
and

PE16F (48)

where we have used equations (26), (43) and (45).

This outflowing highly collimated supersonic stream
represents a new overpressured jet injected into the sur-
roundings. It will expand producing another incident-
reflected shock pair or crossing-shock. We can thus ap-
ply the equations described above to find the proper-
ties of the next crossing-shock.

If the shock velocity of the first crossing-shock is
in the range 9.4 — 43.1 km s™*, the shock models of
Shull and McKee (1979) indicate a rather small frac-
tional ionization behind the shock. Thus we can set
X = 0 in equation (38). Furthermore, since the pres-
sure ratio (Po/Pj°) 2= 1/16 according to equation (48),
the parameters of the second crossing-shock will be

Vst 1 o[ Vsr ] 7 M
[km c‘l] - [lcm a"] - 18'7[10"”\’ ! 49)

oho] a sof i ]
1017 cm “110-8 Mg yr—?

[ ve ]1/2[ o =12 1 AV ]-1 . 50)

X X
100 km s—1 103 em™3 km s~

o
"]~
em™3

with ng and the density and pressure of the new jet
given by equations (44), (47) and (48).

Clearly, in equations (49) and (51), T] now repre-
sents the temperature of the jet that emerges from the
previous crossing-shock. Since this temperature is pro-
portional to the square of the shock velocity (for adiaba-
tic shocks) this will necessarily lead to an unstable situa-
tion in the sense that the shock velocity for successive
crossing-shocks will rapidly increase destroying the jet
after only a few shocks. Indeed, considering a jet with an
initial temperature of 10* °K, the first crossmg -shock
will have a shock velocity of v 18.7 km s™ according
to equation (49). For a strictly adiabatic shock, the tem-
perature of the emergent jet will be v 15200 °K. Thus,
the shock velocity for the next crossing-shock will be
~ 35 km s™!, which will lead to a jet with a temperature
of Vv 35000 °K, etc.

We must note, however, that such an unstable situa-
tion is a direct consequence of the assumption that the
shocks are adiabatic. This assumption is not valid for
shock velocities > 20 km s according to Cant6, Teno-
rio-Tagle and Rozyczka (1988) (their Appendix B).
They find that reflected shocks (their conical collimating
shocks) with shock velocities between v 20 to 200 km
s™! are best approximated asradiative with an equilibrium
temperature v 10% °K, and thus the instability described
above is inhibited. In the next section radiative crossing-
shocks will be considered.

I ave 12
103cm‘3][0‘°K] [kmo“l] » GD

¢) Radiative Crossing-Shocks
In this section, we will assume that both, the incident
and the reflected shocks are radiative with a post-shock
equilibrium temperature of 10* “K. For a highly super-
sonic jet with vy =5/3 and a 0.1 helium to hydrogen par-
ticle density ratio, equation (25) reduces to

e eua(28)] .o

where we have assumed x << 1 since we expect shock
velocities <40 km s™? (see above). In equation (52) the
parameter €] == 1 and can be expressed as

=1-¢§ ' (53)
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with £; given by equation (31).
In the limit of small ¢, 8 and ¢ g (highly supersonic
jets), equations (27), (28), (32) and (33) reduce to

B=&d (54)
vy o, (53)

~ §r(1 - &)
RE Gyt (56)
Vz = V? H (57)

and thus, equations (35), (36) and (37) can be written as

(rL-¢n

Vsn & Ty VST (58)
o (L — &) 1
e i —wwaa® (59)
R = (60)
L ’

with pr , p; and p, given by equations (26), (29) and
(34) respectively. In the above equations we have used

er =1 - ¢p , (61)

where &R is given by an expression similar to equation
(31) (with Vg1 =VgR).

As in §ILb, P, in equation (59) represents the pres-
sure of the outcoming supersonic stream, which will pro-
duce the next crossing-shock. Thus, we can substitute
Po/P, from equation (59) instead of Po/P; in equation
(52) in order to obtain self-consistency. First, we notice
the symmetry of equation (58) with respect to an inter-
change between Vgy and Vggr (1 and &R depend on Vg
and Vgp, respectively, in the same way; see equation
(31)). Thus

Vsp 2 Vg . (62)

That is, we reach the same conclusion as in the case of
adiabatic shocks: the entire crossing-shock is character-
ized by a single shock velocity, that given by equation
(52). Using equation (62), ¢ = &1 and substituting
equations (59) and (53) in equation (52) one obtains

(] = e <{-f-= ]} @

with £[ given by equation (31). The solution of equations
(31) and (63) is

Vsr & 18.7 km s~} . (64)

Therefore, we reach the important conclusion that radia-
tive crossing-shocks within overpressured highly super-
sonic jets will always be characterized by a shock velo-
city of v 18.7 km s™ quite independent of either the
parameters of the jet or those of the ambient medium.
Using equation (64) we can find the other parameters
of the model, the compression factors accross the shocks

& = fp > 0245 (65)
the pressure of the jet emerging from each crossing-shock

P = 16T R ; (66)

the distance between crossing-shocks (from equation

(39

aR |, 30[ M; ]1/2[ Ve ]llzx
1017 em 11078 Mg yr-1 100 km s~1

103 em—3 km s~1

'x[ o -1/2[ IN ]—1 ' ©7)

the pre-incident-shock particle density (from equation

(26))

n} ~n avw 17
[cml's] = 5'4(103 c?n‘s) [km a?*] ! (68)

the particle density behind the incident shock (from
equation (29))

n; = 4.1n3 , (69)

the pre-reflected-shock particle density (from equa-
tion (60))

ng = 16.7 n} , (70)
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and the particle density in the emerging jet

ng = 68.33n] . an

From equation (70) we see that the reflected shock
will dominate the emission of the crossing-shock by a
factor of N 16.7. In order to compare our model with
the observations we have to estimate the electron den-
sity behind the reflected shock. Shull and McKee (1979)
have studied shocks with velocities in the range 40 —
130 km s™'. From their results we estimate that the
post-shock hydrogen ionization fraction scales as ~
Vg3 for Vg between 40 — 60 km s . Extrapolating
to lower velocities we found a fractional ionization of
~ 1072 for Vg v 20 km s™'. Thus, the electron densi-
ty behind the reflected shock will be

ne ~ 0.68 n§ , (72)

or from equation (68)

[] ~

Equation (73) shows another important result of our
model, that is that the electron density in the crossing-
shocks depends only on the parameters (density and
velocity dispersion; that is on the pressure) of the am-
bient medium, and not on the parameters of the jet
itself.

The other parameters of interest, such as the open-
ing angle of the free-expanding part of the jet

L | N N )

a)(°) = 7.7[ (74)

° -1
—_3
100 km o"l] :

its length (in units of the separation between crossing-
shocks)

a};’; = [ - %] =028 (75)

the angle between the incident shock and the axis of
the jet

4

¢ -
100 km a"’] ! (76)

#(°) = 10.7[

and the opening angle of the reflected shock

¢r(°) = 2.6[ (77)

° -1
[ R
100 km c'l] ’
follow from equations (4), (A.1), (17), and (56).

III. CONCLUSIONS

We present the results of an analytic study of the
internal structure of steady jets running into a uniform
medium. The model is restricted to underexpanded high-
ly supersonic narrow jets. In this case, the jet develops
internal crossing-shock as it tries to match its pressure
with that of the ambient medium.

The model gives simple analytic expressions for the
main parameters of the crossing-shocks such as their
shapes, the distance between them, the pre-shock den-
sity, and the shock velocity (that is the velocity which
determines the excitation).

Our main conclusions are the following: 1) the
locus of the incident shock (that is, the locus of the in-
tersection of this shock, which is a surface, with a plane
containing the symmetry axis) is an arc of circumference
passing through the injection point. 2) The distance be-
tween consecutive crossing-shocks is given by

NC/ANG
(aRO) - ( 7P0 ) ’

where Mj is the mass loss rate in the jet, Vj° its velocity
at injection, P, is the external medium pressure, and A
is a parameter of order unity which depends (rather
weakly) on the ratio between the initial thermal pres-
sure of the jet and Py. It is found that regardless of the
initial conditions the jet enters into a self-regulated state
in which this ratio is " 1/17, and A v 1.2. 3) For highly
supersonic jets, the velocity of the jet changes only slight-
ly across the shocks (they are very oblique) and thus
jets running into a uniform medium develop nearly equi-
distant crossing-shocks. 4) For radiative crossing-shocks
with equilibrium temperature N 10* °K, the shocks will
always be characterized by a shock velocity of v 20 km
s7!, quite independent of either the parameters of the
jet or those of the ambient medium. 5) The electron
density in the crossing-shocks depends only on the pres-
sure of the ambient medium and not on the parameters
of the jet itself.

In subsequent papers we will present a more complete
description of the dynamical structure and observational
characteristics of the crossing-shocks through a detailed
numerical study of the problem. In particular, we will
inquire on the basic premises of the present simplified
model, and on the approximations we had to make in
order to solve the problem by analytic methods.
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APPENDIX
Consider the minus sign in equation (15), correspond-

ing to the y > 0 arc. Let r, be the radius at intersection
(in units of Ry). Then,

r. = sin(¢ — a) . (A1)

The pressure in the jet can be expressed as

pic . (A.2)

In particular,

P?=:l’-p°c;2 , (A.3)

where p{° is the jet’s density at injection.
For an adiabatic expansion

Fi [Pf]"
P = |o ’ A.4
I O (A-4)

which, after substitution of equation (A.3), can be writ-
ten as

2?

v
= |2_ ,.
‘P-; = [‘7Pj° p,] . (A. 5)

From equation (5), and introducing the definitions
of Ry (equation (12)) and r (equation (13)), the jet’s
density can be expressed as

e = [oa]m (A.6)

Substituting equation (A.6) in equation (A.5) one
obtains

rl@m@s e

which gives the pressure of the jet as a function of dis-
tance from the injection point. For r = r,, P;j =P, and
equation (A.7) yields

1/2 (v - 1)/2
o P R - R W
J

o °
ver M i

and from equation (A.1)

. 1\¥2/7 4 P\ (v = /2y
¢ = a+arcnn[(;:l-> (]T{;;) (IT;) ] . (A.9)
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