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RESUMEN

Partiendo de una ecuacién monoparamétrica de cuarto orden para la super-
ficie de un elipsoide (en vez de segundo orden, como en las clésicas figuras ho-
mogéneas), se investiga el equilibrio hidrostético de una masa heterogénea, cuya
versién homogénea -que sera la tinica que abordemos en el presente articulo- guarda
un parecido con un elipsoide de Jacobi, salvo que la nuestra es estatica, siendo un
movimiento de vorticidad diferencial el que establece su equilibrio. La serie de Ja-
cobi, que es completa, resulta ser un caso particular de las nuestras, las cuales estan
truncadas por el valor del parametro en la ecuacién de la superficie, que asimismo
determina si la velocidad angular crece paulatinamente del ecuador al polo, o vi-
ceversa; o si es entre ellos donde alcanza su valor méximo. El modelo esferoidal
-nuestra versién de un esferoide de Maclaurin- se trata como un caso particular del
elipsoidal.

ABSTRACT

Departing from a mono-parametric fourth-order surface equation for an ellip-
soid (rather than of the second order, as in the classical homogeneous figures), we in-
vestigate the hydrostatic equilibrium of a heterogeneous mass, whose homogeneous
version—which will be the only one considered in the current paper—resembles a
Jacobi ellipsoid, with the proviso that ours is static, its equilibrium being estab-
lished by a differential vorticity motion. The Jacobi series, which is complete, turns
out to be a particular case of ours, which are truncated by the value of the sur-
face equation parameter, that further determines if the angular velocity steadily
increases from the equator to the pole, or vice versa; or if it has a maximum value
between them. The spheroidal model—our version of a Maclaurin spheroid—is
treated as a particular case of the ellipsoidal one.
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1. INTRODUCTION

In past works, we were engaged with the question of equilibrium and stability of an inhomogeneous body,
held together by gravitational attraction, consisting of two confocal, either spheroids or ellipsoids, that we
called the nucleus and the atmosphere with, as in real stars, the nucleus being denser than the atmosphere.
Our aim was to gain some physical insight on what comes about in celestial rotating bodies, imitating them in
a coarse way—our model is composed of an ideal, incompressible fluid—by using analytical descriptions (like
the ellipsoid equation) rather than pure numerical procedures.

We may summarize our past results as follows. For spheroids, no figures result when the nucleus and the
atmosphere rotate with common and constant angular velocity; on the other hand, a series of oblate figures
arises when the nucleus is flatter and rotates faster than the atmosphere (Cisneros et al. 1983). For ellipsoids,
no figures were found in the case of common and constant angular velocity; anyway, these configurations—as we
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became aware afterwards—are ruled out by Hamy’s theorem (Hamy 1887; Tassoul 1978); the case of different
angular velocities was rejected beforehand, because the velocity fields of the nucleus and the atmosphere are
likely to interfere destructively with each other.

Admitting Hamy’s theorem, we pursued the ellipsoidal model idea after noticing that, among the members of
the inhomogeneous spheroids series quoted above, there were some having a neutral frequency, which encouraged
us to inquire if, by analogy with the homogeneous figures, tri-axial figures could branch off (bifurcate) from
them.

To this end, a Riemann-type model of class .S was employed, in which the nucleus and the atmosphere, while
rotating with a common angular velocity, are endowed with internal currents of different vorticity. Although
this model contributes figures (Cisneros et al. 1993, 2000, 2004), their accuracy is far from matching that of the
classical homogeneous ones; furthermore, none of them can simultaneously be fully ellipsoidal in both nucleus
and atmosphere, unless the last is but a very thin shell, i.e., when the figures are nearly homogeneous. Clearly,
any further pretension of looking for heterogeneous ellipsoidal figures, without sacrificing accuracy, compels us
to take distance from the standard ellipsoid quadratic equation.

2. OUR MODEL

Our new model is constructed on the base of a distorted ellipsoid, whose surface equation is

2 2 2 4
x z z
1 2 a3 as

so that tri-planar symmetry is preserved and the transverse sections are again ellipses; d is a parameter
independent of x, y and z; a1 and as are semi-axes, but ags is the third semi-axis only in the limit d — 0.
The true third semi-axis is zyy, i.e., the solution of the equation

2 4
ordi =, 2)
as as

that is,

as 1+4d 1
= B, [YIFEd 1 (3)
V2 d d
Following (Jeans 1919) the distorted ellipsoids will be called ellipsoidal figures, rather than ellipsoids. In
order for the figures to be closed, zj; must be a real number, i.e. d is limited to
1
d>—-. 4
> ()
According to equation (3) as can be eliminated from equation (1) in terms of the true semi-axis zps, but this
would be impractical.

3. THE GRAVITATIONAL POTENTIAL OF THE HETEROGENEOUS BODY

The body’s atmosphere total potential at an interior point is composed of two contributions: an interior
one, coming from the whole body, assumed to have a density p, throughout, and an exterior one, coming from a
hypothetical nucleus of density p,, — po, which compensates the mass excess of the former calculation; similarly,
the nucleus total potential is composed of two interior contributions. On the other hand, the confocality
condition, which helped to render straightforward the evaluation of the potential (Lyttleton 1953; Macmillan
1958) in our past models, is no longer useful; in fact, as we shall see in our next paper, the nucleus and
atmosphere of our current heterogeneous model are similar ellipsoidal figures, rather than confocal.

In general, the potential of a continuous mass of density p, at a point (z1,z2, x3), is given by (Thornton &

Marion 2008)

veay [& (5)



© Copyright 2015: Instituto de Astronomia, Universidad Nacional Auténoma de México

ON THE EQUILIBRIUM OF A DISTORTED HETEROGENEOUS ELLIPSOIDAL MASS 121

where G is the gravitational constant, R = \/(z — 21)2 + (z — )2 + (v — 23)? and d7 is the volume element.
Also needed are the derivatives of V:

oV dr oV dr oV dr
Or, P ﬁ(x_‘xl)v %—GP @(y—@), TCEB—GP ﬁ(Z—l‘S) (6)

Taking the field point (z1, z2, 23) as the origin of spherical coordinates (R, ¥, p), where R is the distance from
that point to the source point (x,y, z), and using the relations connecting spherical and rectangular coordinates,
namely,

x=uz1+ Rsindcosp, y=uxs+ Rsindsinyp, z=ax3+ Rcos?, (7)
the potential V' and its derivatives become
1
V=go | [IB0.0) - B sioasdp, (8)
9 Je
°)% -2
Ny [ [ 1Ba(9,0) — Ri(9, ) sin? cos o di s, (9)
81'1 9 Jp
ov C 9 g .
NV [ [ 1Ra(9,6) — Ri(9, )] sin? 9 sin o i dp, (10)
81'2 9 Jp
oV .
— = p/ / [R2(¥, ) — R1 (¥, )] sin ¥ cos ¥ dif dep. (11)
81'3 9 Jp

where we have omitted (as we will do hereinafter) the constant G; here, Ry(¥, ¢), and Ry (¥, ¢), are the two
positive solutions of the equation

1 + Rsind cos p)? o9 + Rsindsin )2 3 + Rcosv)?
(z1 ! ®) +( 2 ! ®) +( il ) +d( :
a? a? a? aj

x3+ Rcosv)* ) (12)

For an exterior point, Ro and R; correspond to the body’s surface points (for a given pair (¢, ¢)) where R cuts
it; for an interior point there is only one intersection, so that Ry = 0 and Ry # 0. Equation (12) must be solved
for each (z1, 22, x3). For an interior point, the limits of ¢, and ¢ are simply (0,7), and (0, 27), respectively,
but for an exterior point the limits are more complicated.

3.1. Limits of ¥ and @ for exterior points

It should be realized that in going from an exterior point to any point on the body’s surface, the angle
cannot take any value within the range 0 < 9 < m, because it is restricted by the limits arising from all the
tangents to the surface that can be drawn from the point, thus generating a cone with vertex at (x1,zq,z3); r
is constrained to vary only inside this cone. The loci of the tangent points (x,y, z) are given by equation (1),

and the relation 5

x Y z 2z
(xl—x)a—%—l—(xg—y)a—%—k(xg—z)%—&—Qd(xg—z)a—%:O, (13)

that is, two of the coordinates are determined as a function of the third. For the sake of simplicity, z will be
taken as the independent variable (parameter). Solving the equations, two z-dependent solutions are obtained:

alajajzy (a — ajasz + d2*(—2w3 + 2)) — \/ra
€T =
: of (341 + afe3) |
a3 (atasal (af — adwsz + dz3(—2as5 + 2)) + 21\/Ta)

v = 3 82,2 2.3 )
aiag (agzize + ajry)

afadajzy (a — adasz + d2*(—2w3 + 2)) + /o

€T =
- a5 (a3a? + afa3) ’
vy — a3 (a‘llaém% (a§ —adwzz + d23(—2x3 + z)) — ml,/ra)
2 — 2 8 )

2.2 2.3
aiag (a37iTe + afry)
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where the radicand r, is given by
Tq = —a‘llagzzzg [a%a%mf (—ag +a3z® + dz4) +a? [a%x% (—agL +a32® + dz4)
+a3 (a3 — ajzsz + d2° (=223 + z))QH . (14)

For some very special (singular) situations, the solution may differ from the above, but this point will not
concern us. We require real solutions in order to have physically meaningful results, and so r, > 0. The r, limit
for having real roots is r, = 0, thereby resulting two extremes values, let us call them z, and z;, that must lie
in the range (—zus, zar). With the points (211,91, 2), one half of the tangent curve can be built if z is let to run
from z, to z,, while the other half comes from the points (z12,y2, 2). Letting z vary in its allowed range, the
angles ¢ and ¢ change from a minimum value to a maximum, which can be found with the expressions

Y1 — X2
bl
T11 — X1

zZ — I3
9= 15
arccos ——, (15)

@ = arctan

R=/(z1 — 211)2 + (w2 — 11)? + (w3 — 2)2,
and

Y2 — T2
p = arctan — ¢} = arccos
T12 — X1

Z— I3
R

(16)

R = \/(I1 —x12)? + (22 — y2)? + (23 — 2)2.

According to these equations, the spherical angles are functions of z: ¥ = 9(z) and ¢ = ¢(z), so that after
eliminating z we have

9 =0(g). (17)
It is found that for each ¢ there are two ¥ values: 1; and ¥J2. Therefore, the integration limits of the integrals
(8)-(11) for exterior points are:

0= (01(¢):92(¢)), = (Pa¥), (18)

where ¢, and ¢, are the maximum and minimum values that ¢ can take.

4. THE EQUILIBRIUM EQUATIONS AND A NORMALIZATION

Each fluid particle of our model, while subjected to the whole body’s gravitational field, moves about the
z-axis with a certain velocity v; thence its equation of motion is

a4 P 1oy _ 90 P
dt(v p+2v)_8t(v+p>, (19)

where p is the pressure at the point. Our concern is aimed at a steady state and so the right-hand side of this
equation is zero, that is,
1
vl o cte.; (20)
p 2
i.e.,, Bernoulli’s theorem (Dryden 1956), which holds for any streamline, will be the governing ‘equilibrium’
equation of our body.
The dimensions of the masses under study are typically of order 10° m; it is possible to avoid dealing with
such inconvenient quantities if the semi-axes are normalized—as will be implicit hereinafter—taking a; as a
scale factor. For the surface coordinates we write

r=m7, y=a1y, z=a 7, (21)
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for the reference point
! / !
T1 =012y, T2=0a1Ty, X3=0a1T3, (22)

and for the potential and its derivatives

v v av v’ v v’

V=a?pV' = —= — = — 23
WPV gy — 1P oy’ Oxs e oxhy’  Oxs ap oxly’ (23)
The normalized surface equation takes the form
2 2 !
P2+ vai =, (24)
€ €3 €3

where ey = ag/ay, and e = ag/ay; for economy of writing the normalized variables will be renamed as the
original ones.

The equilibrium equation (20), which we write more explicitly farther on as equation (26), was found
impossible to satisfy for a constant angular velocity, so this kind of motion had to be discarded. It seemed wise
to replace it by an internal motion of non-uniform vorticity; the figures of our interest are therefore static, as
seen from an inertial frame of reference. A moving fluid particle will describe an ellipse perpendicular to the
z-axis, with the ellipse staying fixed in space, its axes pointing permanently along fixed directions.

Now, according to Dedekind, the vorticity ¢ of the ellipsoid internal motion is related to the rotation angular
velocity w of the congruent Jacobi ellipsoid by (Chandrasekhar 1969)

e 1+e3
—, or (=—-—w—",
14 e5 e

w:(ovovw)v C:(0’07<)a

where w and ¢ are vectors along the z-axis: w = (0,0,w), and ¢ = (0,0,¢). Hereinafter, the term “angular
velocity” will be used as synonymous to vorticity.

w=-¢ (25)

5. THE HOMOGENEOUS ELLIPSOIDAL MASS

So far, some of our considerations have been addressed to an inhomogeneous body; we wish, however, to
adjourn this more general model for a future paper, and explore here only the case when no atmosphere is
present; for, as we shall see, our homogeneous figures have some novel features which contrast with Jacobi’s
(or Dedekind’s). The velocity of a rotating fluid particle is v = w(—y, z,0).

5.1. The equilibrium equations

Since the body is self-gravitating, the pressure must vanish at each point on its bounding surface, so that
equation (20) becomes

1
pV + 3 pw?(x3 + x3) = const.;
or, in terms of the normalized semi-axes

w2

V+Q@i+23) =k Q=-—"1
+Q (21 + 23) =k, a1 G’

(26)
(21,22, x3) are the coordinates of a surface point where the potential has to be evaluated, in order to satisfy this
boundary condition. As we have pointed out, equation (26) cannot be satisfied for a constant angular velocity,
contrasting with Jacobi’s figures, for which the angular velocity is constant at all body’s surface points, for a
given pair of eccentricities. We will assume that the angular velocity (vorticity) depends on the coordinates of
the point, the dependence being restricted only by the continuity equation div v = 0; that is,

Ow e
02 Ox3’
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from which we infer that
w=w(r,a3), and Q=Q(r z3), r=ax?+ 3 (27)

By totally differentiating equation (26) and using the surface equation (equation 24), there result the following
two expressions

o0
2(1—e%)Q—l—?(l—e%)TE—l—bl—egbz:0, (28)
o0 e2r 00N €2
20— 2 by + b3 =0, 29
" or + dze3zs O 2+ dze3 3 (29)
where we have written
1 0V 1 0V 1 0V 2dx?
by = —— =——— by3=——, d3=1 3
YT 0x 2T xp0my  ° x3 Ox3’ 3 + e3

For the special case in which d =0 and b; and 2 are constants, equations (28) and (29) become
o2
2(1 —e2)Q4by —elby =0, —29—b2+§b3:0, (30)

which are the classical equilibrium conditions for Jacobi’s figures.
At the pole (r = 0) the equilibrium conditions (26), (28) and (29) become

k= "V, (31)
2(1 —€3)Q, + b1y, — €3 by, =0, (32)
2
—20, — bop + — Dby, =0, m3 =z, (33)
d3€2

where the subindex p refers to quantities pertaining to the pole.

5.2. Results

In this paper we are exclusively concerned about the existence of equilibrium figures; the question of stability,
particulary about the possible presence of bifurcation points, i.e., the occurring of neutral frequencies, will be
deferred to a next paper.

We may characterize one of our figures of fixed d by the quantities es, zjs (or es) and the angular velocity
distribution Q(r, z3). The standard procedure for obtaining Jacobi’s figures is to fix e and then use equa-
tions (30) to settle ez and 2. In our case, we can determine es by fixing ey in equation (32), but this yields
only Q,, the additional required quantity being the whole angular velocity (r,z3), which can be evaluated
by an approximation method. We assume that, along a path (streamline) followed by a particle, the angular
velocity is a linear function of 7, say, ! = a, + a7, where o, and «,, are constants which can change from
path to path (i.e., for different x3 values), so that

Q(r,x3) = ag(xs) + ay(zs) T (34)

Because of the implied tri-planar symmetry, the equilibrium equation for constant x3, namely
Vo=V = a£r+ayr2,

need to be solved only in the positive quadrant, for which a fitting procedure involving ten points will be
employed. Each quarter of a meridian (i.e., the interval [0, z5s]) is divided into ten equidistant points, plus two
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TABLE 1

SEMI-AXES (a; = 1) €2, zm, POLAR ANGULAR VELOCITY Q,,
AND POLAR POTENTIAL V,, FOR d = 1/8

€2 €3 M Qp V;?
0.99 0.6574037 0.623314 0.6107413 3.394020
0.95 0.6437333 0.610414 0.6101262 3.255665
0.90 0.6257421 0.593354 0.6080722 3.080440
0.80 0.5864383 0.556084 0.5987912 2.722499
0.70 0.5420833 0.514025 0.5807111 2.355015
0.60 0.4918012 0.466346 0.5509603 1.979067
0.50 0.4345488 0.412057 0.5058888 1.596755
0.40 0.3691012 0.349997 0.4410814 1.212036
0.30 0.2940654 0.278845 0.3518685 0.832397
0.20 0.2079810 0.197216 0.2355074 0.472689
0.10 0.1096994 0.104021 0.0993468 0.165242
0.05 0.0560198 0.053120 0.0359555 0.053368

backing points at the extremes, and the constants o, and a,, are then evaluated for each path. Unfortunately
the results so obtained contain an additional constant which is not small enough (especially near the equator),
by which we mean quantities of order 10~7; this is because V was determined with an accuracy no less than
10~7. Therefore, equation (34) must be revised, for which purpose we set

Q(r, z3) = ag(x3) + oy (z3) 7 + @, with  ag(za) =0, (35)
so that Bernoulli’s equation now reads
Vo=V =as+a,r+a,r?, (36)

and the constants o, a, and o, can be evaluated in a similar fashion. Except near the equator, the new
precision turns out to be much better than with a; = 0. Once the a parameters for each path of a specific
figure have been evaluated, the corresponding angular velocity distribution follows.

Notice that for every d value there corresponds a series, each characterized by the various possible semi-axes,
and the corresponding angular velocity distributions. As is well-known, for d = 0 the Jacobi series follows,
which admits only a pair of axes for any angular velocity value.

We may obtain one of our series by fixing es in equations (32) and (33) and solving them for eg and €, thus
determining the possible semi-axes. Table 1 gives data for d = 1/8. Table 1 shows that beginning at 0.6107
where the largest polar angular velocity occurs (and where the figure is nearly spheroidal), the semi-axes es
and zps continuously decrease with decreasing €,,, just as observed in Jacobi’s ellipsoids. From ez o~ z); = 0.1
on, the situation reverses and we have zj; > es (not observed in Jacobi’s figures); this last behavior will later
be discussed. Next, the figure’s angular velocity distribution must be determined, for which we proceed as
explained above. Table 2 summarizes the results for e; = 0.5 (seventh row of Table 1), and Figure 1 is the
corresponding plot of € vs. r.

According to Figure 1 the path’s angular velocity with x3 = const. decreases from the major axis (r large)
to the es-axis (smaller r). In addition, a global tendency of the angular velocity to decrease from the pole to
the equator can be inferred, since «, and «, themselves decrease.

Since Table 2 is not particularly suitable for practical situations, we will try to describe our results with
somewhat more clarity by empirically establishing analytical expressions. Due to our limited computation
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Fig. 1. Angular velocity distribution in an ellipsoidal fig- Fig. 2. The limiting d-curve points are characterized by
ure with d = 1/8, e2 = 0.5 and 2y = 0.4121. Each curve the property zar = e2. The forbidden region corresponds
gives the angular velocity as a function of r for a trajec- to figures with zaps > es. The curve is plotted using a
tory z = x3 = const.. The bottom curve corresponds to logarithmic scale for d.
one fourth of the equator, and the topmost (thick point)
to the pole.
TABLE 2

ANGULAR VELOCITY PARAMETERS Q = a, + a, r + a,/r AS FUNCTION OF CONTOUR LEVEL,
3, FOR ey = 0.5 (7TH ROW OF TABLE 1)*

T3 Qg Oy Qg
0.0374559 0.5125501 0.0038054 -0.0325523
0.0749119 0.5123801 0.0037891 -0.0309362
0.1123678 0.5120970 0.0037621 -0.0283352
0.1498238 0.5117015 0.0037250 -0.0248876
0.1872797 0.5111943 0.0036781 -0.0207866
0.2247357 0.5105765 0.0036222 -0.0162794
0.2621916 0.5098497 0.0035580 -0.0116667
0.2996476 0.5090153 0.0034864 -0.0073021
0.3371035 0.5080754 0.0034083 -0.0035906
0.3745595 0.5070323 0.0033245 -0.0009880

*The error in k (equation (26)), due to the approximation in €2, is less than about 107°.

facilities, we tried not to spend too much time seeking an optimal fit. We found that the parameters a,, ay
and «; as given by

2 2 2
Qg = g0 + 01 T35, Qry = Qo + Qg1 T3, g = Qg0 Zs + Que1 25, (37)
with
2 4
T3 T3
2= |1——=5 —d— | (zmr —23), (38)
€3 €3

reproduce the angular velocity with an uncertainty at about the fifth decimal place (for larger d the uncer-
tainty can be in the second decimal place). In this way, the angular velocity distribution based on Table 2 is
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TABLE 3

PARAMETERS OF THE ANGULAR VELOCITY ©Q = a0 + a1 23 + (o + o1 23) 7+ (s0 26 + a1 22) /1,
AS A FUNCTION OF ey AND 2,

e ZM Q0 Q1 0 ay1 aso Q1
0.99 0.623314 0.619643 -0.023107 0.002463 -0.001061 -0.207990 0.136757
0.95 0.610353 0.619016 -0.024067 0.002562 -0.001148 -0.203685 0.136770
0.90 0.593294 0.616919 -0.025348 0.002692 -0.001272 -0.198056 0.136812
0.80 0.556029 0.607437 -0.028204 0.002967 -0.001581 -0.185878 0.137003
0.70 0.513974 0.588967 -0.031512 0.003256 -0.002004 -0.172291 0.137377
0.60 0.466299 0.558587 -0.035347 0.003546 -0.002601 -0.157013 0.137996
0.50 0.412015 0.512595 -0.039771 0.003804 -0.003483 -0.139678 0.138936
0.40 0.349962 0.446541 -0.044795 0.003963 -0.004861 -0.119798 0.140297
0.30 0.278817 0.355768 -0.050245 0.003892 -0.007211 -0.096719 0.142188
0.20 0.197196 0.237672 -0.055378 0.003340 -0.011841 -0.069582 0.144671
0.10 0.104011 0.099982 -0.057267 0.001921 -0.024017 -0.037413 0.147578
0.05 0.053115 0.036114 -0.052974 0.000846 -0.041463 -0.019265 0.148972

approximately described by

-0.13968 2, + 0.13894 22
- .

Q = (0.51260 — 0.03977 3) + (0.00380 — 0.00348 z3)  + (39)
With this angular velocity expression the complete set of figures based on Table 1 can be obtained, which
we list in Table 3.

5.3. The forbidden ellipsoidal figures

Our ellipsoidal figures have semi-axes 1, eo and z);, the last being for a fixed e; a measure of the flattening:
as zp decreases the figures become more flattened. According to our calculations, in equilibrium conditions
the parameter d in the figure’s equation determines zj;. Fixing es at some intermediate value, say, 0.5, we now
inquire about the effect on zj; as d increases, starting at its minimum value —1/4, thus constructing Table 4.
The d range can be split into two segments: from d = —1/4 to d = 1.37576 corresponding to figures with
2z < ey (or figures of high flattening); and for d > 1.37576, which characterize figures with zp; > es (or figures
of low flattening). In this last case zps is not the smallest axis, but es. The segment —1/4 < d < 1.37576
can further be divided from —1/4 to 0 and from 0 to 1.37576, the first (second) comprises figures more (less)
flattened than Jacobi’s ellipsoids. The figures with e, as the smallest axis are not physically acceptable because
by equation (36) 2 (~ w?) must necessarily be negative, since near the es-axis we have V' > V},. This region in
the d-e5 plane is therefore forbidden for our figures.

We now derive the relation d = d(es) for which z; = eg. For this purpose, we build a table similar to
Table 1 varying es and determining d and €2, instead of e3 and 2,. These results are summarized in Table 5,
and Figure 2 is a logarithmic plot of d vs. es. Figure 2 shows the limiting d-curve that separates the region of
allowed equilibrium figures (zps < e2) from that of physically impossible ones (zp; > es; shaded area); for a
given d and e, a series of figures starting upwards at this es; value can be obtained. Thus, as d increases, so
does es, and the series becomes narrower. The Jacobi series, which corresponds to d = 0 and starts at e; =0
is accordingly the widest series.

One interesting aspect of the frontier figures is that the angular velocity vanishes at point (0, e2,0) on the
equator, i.e. the particle is momentarily at rest there. For example, for the limiting figure with es = 0.5, and
d = 1.3757, the angular velocity distribution is as shown in Figure 3. In Figure 3, each contour represents 2
as a function of the squared distance r to the rotation axis; the lower one corresponds to the equator (x3 = 0),
for which Q =0 at r = 0.25.
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Fig. 4. Q-distribution on the surface of the figure with

Fig. 3. Q-distribution on the frontier figure surface with
e2 = 0.5 and d = —1/8.

ez = 0.5 and d = 1.3757. Each curve corresponds to a level
x3 = const., the lower refers to the 4th of the equator. This
curve has Q =0 at r = 0.25.

TABLE 4

SEMI-AXIS zpr AND ANGULAR
VELOCITY €, AT THE POLE?

d es M Q TABLE 5
-0.24 0121315 0.156617  0.267996 SEMLAXIS e, d AND THE ANGULAR
-0.20  0.223374  0.262592  0.334846 VELOCITY §, AT THE POLE®
-0.10  0.325414  0.345463  0.457815
0.10 0425481 0407237  0.502733 e es d Q,
020 0459227  0.424407  0.513867 0.90 6.2003630 220.49916  0.7200396
0.30 0487620 0437618  0.522053 0.80 1.9499815  29.354738  0.6984864
0.40 0512306 0.448249  0.528403 0.70  1.2614507 72978365  0.6659624
0.50  0.534218 0457076  0.528403 0.60 0.9048244  2.8974497  0.6196744
0.60  0.553980  0.464578  0.537754 0.50 0.6661618  1.3757080  0.5564224
0.70  0.572047 0.471067  0.541337 040 0.485668%  0.6990221  0.4728749
0.80  0.588699  0.476762  0.544420 0.30 0.3388724  0.3520459  0.3664056
0.90  0.604175 0.481819  0.547111 0.20 02134747  0.1586715  0.2374685
100 0.618649  0.486352  0.549485 0.10  0.1022864  0.0483855  0.0969456
1.37576  0.666157  0.500001  0.556423 “For completencss e is ncluded.

2.00 0.729067  0.515528 0.563938
7.00 0.999921  0.559622 0.583197

2The values are given as a function of d, for e = 0.5.
es is included as a byproduct.

The reason for obtaining models with 2 < 0 is because, contrary to what ordinarily occurs, the maximum
of the potential does not occur at the pole, but right on the es-axis, at the point (0, e3,0). We might attempt
to rescue forbidden models if the constant k in equation (26) is taken as the maximum potential, instead of V},;
in this way, negative values of Vi .« — V would be avoided and hence 2 > 0; however, this would imply © = co
at the pole, since ag = Vipax — Vj.
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TABLE 6

SEMI-AXIS zyr AND PARAMETERS OF THE APPROXIMATE ANGULAR VELOCITY
Q= QO + leg + QQ.’[% + le'g a

Q = QO +Ql l’g +QQ$§+93.’E§

2 Q, Qo M Q Q3

0.623314 0.6107413 0.619642 -0.023106 0.002462 -0.001060
0.610414 0.6101262 0.619015 -0.024067 0.002562 -0.001148
0.593354 0.6080722 0.616918 -0.025347 0.002691 -0.001272
0.556084 0.5987912 0.607437 -0.028203 0.002966 -0.001580
0.514025 0.5807111 0.588967 -0.031512 0.003256 -0.002003
0.466346 0.5509603 0.558587 -0.035346 0.003546 -0.002601
0.412057 0.5058888 0.512595 -0.039771 0.003804 -0.003482
0.349997 0.4410814 0.446540 -0.044794 0.003963 -0.004861
0.278845 0.3518685 0.355768 -0.050244 0.003891 -0.007211
0.197216 0.2355074 0.237672 -0.055377 0.003339 -0.011841
0.104021 0.0993468 0.099981 -0.057267 0.001921 -0.024016
0.053120 0.0359555 0.036113 -0.052974 0.000845 -0.041463

#The values given correspond to the spheroidal figures of the series with d = 1/8; the pole’s angular velocity €2,
is included (second column).

The figures for negative d (from 0 to —1/4), have the following peculiarity. As was previously remarked,
figures with negative d are more flattened than those with d > 0; in addition, the angular velocity distribution
becomes, in a certain sense, reversed, since {2 increases from the pole to the equator—rather than the opposite—;
Figure 4 is a plot of Q vs. r, for d = —1/8 and e = 0.5 (to be compared with Figure 1).

6. THE SPHEROIDAL FIGURES

For the special case e3 = 1, the path of a fluid particle will be a circle of radius /r, and we have spheroidal
figures. The surface equation of the distorted spheroid is

2 4 2 4

x x x x
x%—i—az%—&——g—&—d—i’:l, or r—&——g’—&—d—i’:l. (40)
€3 €3 €3 €3

By symmetry, the potential will depend only on 7 (= 2?2 + 23) and x3: V = V(r,x3). The angular velocity
along a path of fixed x5 will now be constant, and the equilibrium equations (28) and (29) reduce to
o0 edr 09

2
e
—20 — 2r— b+ 2b3=0 41

T6r+d3x38:v3 1+d3 3 ’ ( )

where )
2dx

dz3 =1+ D) 2 ;
€3

assuming the r dependence like in equation (34), with «, as stated in equation (37), © becomes a sixth-order

even polynomial in x3. Let us take

Q= Qo + Q23 + Qi + Qs (42)
where €, ..., 23 are constants. The pole’s angular velocity is determined by
€3
—blp + — bgp — 2Qp =0,

ds3
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) o ) Fig. 6. d-curve in the range of negative values that sepa-
Fig. 5. Limiting d-curve that separates the region of {2- rates spheroidal figures with 2 > 0 from those with Q < 0
distribution with a maximum at the pole from that with (shaded area).

a maximum between pole and equator.

and Bernoulli’s equation becomes

The determination of the 2-constants can be achieved similarly as for the ellipsoidal figures, using again a
quarter of a meridian. We calculate V' at each point, and determine them by fitting equation (41) now with 16
supporting points; these results are summarized in Table 6.

TABLE 8
SEMI-AXIS (a1 =1, ea =1) zp, €3, d

es ZM d

TABLE 7 0.100836 0.138297 20,2490

es, 21, d 0.137018 0.185648 -0.2480

» - y 0.278700 0.359500 -0.2400

0.201936 0.191486 0.1250 0307095 0.392615 -0.2375

e 0505603 0900 0.412897 0.508069 -0.2250

T me b twm o them o
0.291115 0.237719 0.7500

st i o 0.599570 0.692323 01875

o Lons o o0 o0 0.643739 0.731777 -0.1750

0.381815 0.270015 2.0000 0683007 0-765636 -0.1625

0.042854 0.282426 3.0000 0.718474 0.795253 -0-1500

0.737333 0.810635 10,1428

0.750894 0.822539 01375

0.780809 0.845142 10.1250

0.904208 0.936105 -0.0625
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For positive d, there are no restrictions as to the existence of spheroidal figures. However, the angular
velocity distribution behaves according to two different patterns: in one, the maximum of  occurs somewhere
between the equator and the pole; while in the other, it appears right at the pole; these results are summarized
in Table 7, and Figure 5 is a plot of d vs. e3, showing the boundary curve separating these two patterns. For
a given d, for example d = 1, there is a value of eg (= 0.3), below which the first pattern shows up and above
which the other pattern occurs.

6.1. The forbidden spheroidal figures

For negative d, there result figures with 0 < 0, that must be discarded. Figure 6 is a plot of —d vs. es,
showing the curve that separates the region of forbidden figures (shaded area) from the permitted ones. For a
given d value, for example d = —0.2, there corresponds a e3 value (= 0.6) below which figures exist, but are
physically impossible otherwise.
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