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ABSTRACT

It is a well known result that a periodic ejection variability in a hypersonic
jet results in the production of a train of internal working surfaces (one working
surface produced by each period of the ejection variability) travelling down the jet
beam. This mechanism has been successfully applied to model the knot structures
of Herbig-Haro (HH) jets. In this paper we explore the possibility of producing
more than one working surface with each ejection variability period. We derive the
mathematical criteria that have to be satisfied by the functional form of an ejection
velocity variability that produces double working surfaces, and study a family of
functions with appropriate properties.

RESUMEN

Es un resultado conocido que una expulsión variable periódica en un chorro
hipersónico tiene como resultado la producción de una cadena de superficies de
trabajo internas (una superficie de trabajo por cada peŕıodo de la variabilidad)
que viajan a lo largo del chorro. Este mecanismo ha sido exitosamente aplicado
para modelar las estructuras de nudos de chorros Herbig-Haro (HH). En el presente
art́ıculo exploramos la posibilidad de producir más de una superficie de trabajo con
cada peŕıodo de la expulsión variable. Derivamos criterios matemáticos que deben
ser satisfechos por la forma funcional de una velocidad de expulsión variable que
produzca superficies de trabajo dobles, y estudiamos una familia de funciones con
propiedades apropiadas.

Key Words: ISM: Herbig-Haro objects — ISM: jets and outflows — ISM: kinematics
and dynamics — stars: formation

1. INTRODUCTION

Rees (1978) suggested that a time-variability in
the ejection of an extragalactic jet would produce
shock waves travelling down the jet beam. This idea
was pursued by Wilson (1984, who presented gas-
dynamical simulations of ejections with a periodical
variability) and Roberts (1986, who presented a mo-
mentum conserving model of a stochastic ejection).
Raga et al. (1990) applied variable ejection jet mod-
els to outflows from young stars.

In the context of Herbig-Haro (HH) objects, vari-
able jet models have proved to be quite success-
ful, because images obtained with the Hubble Space
Telescope (HST) in some cases show that knot chains
along HH jets show structures similar to the “inter-
nal working surfaces” that result from ejection ve-

1Instituto de Ciencias Nucleares, UNAM, México.
2Instituto de Astronomı́a, UNAM, México.

locity variability. Comparisons between predictions
from numerical simulations of variable jets and ob-
servations have proved to be quite successful at least
for some HH objects (e.g., HH 211: Völker et al.
1999; HH 111: Masciadri et al. 2002; HH 444: Raga
et al. 2010; HH 34: Raga et al. 2012 HH 1: Hansen
et al. 2016).

Theoretical work on variable HH jets includes
both analytical models (e.g., Raga & Kofman 1992;
Smith et al. 1997; Cantó et al. 2000) and numeri-
cal simulations (e.g., Stone & Norman 1993; Raga &
Biro 1993; Cerqueira & de Gouveia Dal Pino 2001;
Hansen et al. 2015); single- and multi-mode peri-
odical ejections (e. g., Raga & Noriega-Crespo 1998;
Raga et al. 2015), as well as stochastic ejections
(Raga 1992; Yirak et al. 2009, 2012; Bonito et al.
2010a, b; Raga & Noriega-Crespo 2013; Hansen et
al. 2015, 2016).
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220 RAGA & CANTÓ

Multi-mode, periodical ejection variabilities and
stochastic ejections produce two-shock “internal
working surfaces” which travel at different velocities
along the jet beam. This results in “knot merging”
events, in which a faster working surface catches up
with a slower one, and both merge into a single work-
ing surface (travelling at an intermediate velocity).

A single-mode sinusoidal ejection velocity vari-
ability produces one working surface per ejection pe-
riod. These successive working surfaces have almost
identical time evolutions, so that catching-up events
(between successive knots) do not occur. However,
it is possible to construct single-mode ejection veloc-
ity variabilities which lead to the formation of two or
more internal working surfaces per ejection period.
These working surfaces do not necessarily have iden-
tical time evolutions, so that catching-up events can
be produced.

In the present paper, we describe ejection veloc-
ity variabilities that lead to the formation of two
working surfaces per ejection period. In § 2, we de-
scribe the formation of internal working surfaces by
a periodic ejection velocity variability, derive crite-
ria for the production of multiple working surfaces
per ejection period, and describe possible ways to de-
rive ejection variabilities leading to multiple working
surfaces. In § 3, we explore the formation of pairs of
internal working surfaces through an ejection veloc-
ity variability of the form u0 ∝ sinn ωτ , where u0 is
the time-dependentent ejection velocity, n is an odd
integer, τ is the ejection time, and ω is a constant.
Finally, we summarize our results and discuss the
implications for HH jets in § 4.

2. THE FORMATION OF MULTIPLE
WORKING SURFACES BY A PERIODIC

VARIABILITY

Let us consider a hypersonic, free-streaming jet
with a time-dependent ejection velocity u0(τ) (given
as a function of the ejection time τ). As shown by
Raga et al. (1990), if the ejection velocity increases
with τ (i.e. u̇0 = du0/dτ > 0), the fluid parcels
ejected at a time τ catch up with each other at a
time

tcol =
u0

u̇0

+ τ , (1)

(see equation 4 of Raga et al. 2015). Therefore,
the parts of the u0(τ) variability with u̇0 > 0 can
in principle give rise to discontinuities (which cor-
respond to two-shock “internal working surfaces”,
see, e.g., Kofman & Raga 1992). However, the fluid
parcels ejected at a time τ can hit an already ex-
isting internal working surface at a time t < tcol.

Because of this, Raga & Kofman (1992) argued that
the working surfaces corresponding to the successive
ejection variability periods would initially be formed
by the fluid parcels ejected at times τc that corre-
spond to minima of the tcol(τ) function (see equa-
tion 1). Therefore, the fluid parcels which lead to
the initial formation of a working surface are ejected
at times τc which are given by the roots of the equa-
tion

dtcol
dτ

=
d

dτ

(

u0

u̇0

)

+ 1 = 0 , (2)

where care must be taken to see that the roots actu-
ally correspond to minima (rather than maxima) of
tcol(τ).

For the well studied case of a sinusoidal ejection
velocity variability, each period has a single root (see
equation 2), and a single working surface is formed
per ejection variability period (this problem having
a full analytic solution, see Cantó et al. 2000). The
successive working surfaces (one per ejection period)
are formed at times:

tc =
u0(τc)

u̇0(τc)
+ τc , (3)

(obtained setting τ = τc in equation 2) and at a
distance

xc = (tc − τc)u0(τc) , (4)

from the outflow source (see equations 7-8 of Raga
et al. 2015).

It is possible to construct functional forms for
u0(τ) that produce two or more roots for equation
(2) per ejection period. Let us assume that we have
two roots τc1 < τc2. The fluid parcels ejected around
τc,1 will produce a working surface at a time tc,1
and position xc,1 (obtained from equations 3-4). The
parcels ejected around τc,2 (> τc,1, see above) will
catch up with each other at a later time tc,2, at a
distance xc,2 from the source (see equations 3-4).

Clearly, if
xc,2 ≤ xc,1 , (5)

the second working surface will indeed be formed be-
fore the fluid parcels ejected at time τ2 hit the first
working surface (produced by the parcels ejected at
time τ1). Therefore, if we have a periodic ejection
velocity variability u0(τ) with two τc roots of equa-
tion (2) per ejection period satisfying condition (5),
two internal working surfaces (per period) will be
formed. These internal working surfaces will in prin-
ciple have different equations of motion (resulting in
different velocities along the jet flow), so that catch-
ing up processes between successive working surfaces
will occur farther along the jet beam.
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DOUBLE WORKING SURFACES 221

Of course, we could have variabilities which do
not satisfy condition (5) but still lead to the forma-
tion of working surface pairs. This is due to the
fact that at the time t = tc,2 (in which the second
working surface is formed) the first working surface
will have moved down the jet flow from the position
xc,1 at which it was formed, to a position x1(tc,2).
Therefore, the second working surface would still be
formed provided that

xc,2 < x1(tc,2) . (6)

In order to apply this condition, however, one
needs to solve the equation of motion for the first
working surface (in order to calculate its position
at time tc,2). In the present paper, we will use the
simpler criterion given by equation (5) (which is a
sufficient but not necessary condition for the forma-
tion of working surface pairs), and apply it to study
a family of periodic functional forms for u0(τ) (see
§ 3).

We end this discussion by noting that it is possi-
ble to construct forms for u0(τ) which lead to the for-
mation of two or more internal working surfaces per
ejection period in the following way. In Figure 1, we
show an ejection velocity variability with two steps
(at ejection times τ1 and τ2) of increasing veloci-
ties per ejection period p. This variability gives two
roots of equation (2) which are τ1 and τ2. Each of
these velocity jumps produces a working surface at
the ejection point (i.e., xc,2 = xc,1, so that condition
5 is satisfied). Therefore, two working surfaces are
produced per ejection period for the velocity vari-
ability shown in Figure 1. At later times, the faster,
second working surface eventually catches up with
the first working surface produced by each ejection
variability period.

The ejection variability shown in Figure 1 can be
used as a model for obtaining continuous forms of
u0(τ) which produce two or more working surfaces
per ejection period. An example of this is explored
in the following section.

It is of course possible to construct a periodic
ejection variability that produces two working sur-
faces, with the second working surface being slower
than the first one. In this case, one would obtain
interactions between working surfaces produced in
contiguous ejection variability periods. However, by
appropriately shifting the starting times of the ejec-
tion variability periods, the problem can be con-
verted into the “slow first working surface/fast sec-
ond working surface” case described above.

p τ

u

v

v

v

1

2

3

0

τ τ1 2

Fig. 1. Schematic diagram of a “double box-car” ejection
velocity variability. Within the ejection period p, the
velocity has an initial value v1, then jumps to v2, to v3

and back to v1. The properties of the resulting flow are
described in § 2.

3. ODD POWERS OF A SINE WAVE

3.1. General considerations

We consider an ejection velocity variability of the
form:

u0(τ) = v0 + v1 sin
n ωτ , (7)

where u0 is the ejection velocity (as a function of the
ejection time τ), n is an odd integer, and v0, v1 and
ω are constants.

In Figure 2, we show the first period of sinn ωτ for
n = 1, 3 and 5. One sees that starting from n = 3,
this function has two steep rises (as a function of
increasing ωτ) per period p = 2π/ω. In the following
subsections, we show that these two rises result in
the production of a pair of internal working surfaces
per ejection period.

We calculate the ejection times τc which give rise
to the fluid parcels which eventually form internal
working surfaces as the roots of equation (2). Com-
bining equations (7) and (2) we obtain that the ejec-
tion times τc giving rise to working surfaces for a
sinn ωτ variability are given by the roots of:

λ
(

sin2 ωτc − 2
)

− sinωτc = 0 , (8)

for n = 1, and

λ
[

n sinn+2 ωτc − (n+ 1) sinn ωτc
]

−n sin2 ωτc + n− 1 = 0 , (9)
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222 RAGA & CANTÓ

Fig. 2. This graph shows a single period of the functions
sinωτ (solid line), sin3

ωτ (dashed line) and sin5
ωτ (dot-

ted line).

for n = 3, 5, . . ., where λ ≡ v1/v0. The roots for
the n = 1 case (equation 8) are described in § 3.2,
and approximate solutions for the n ≥ 3 case are
presented in § 3.3.

3.2. The n = 1 case

Equation (8) has a single root

sinωτc =
1

2λ

(

1−
√

8λ2 + 1
)

, (10)

in the −1 ≤ sinωτc ≤ 1 range. This equation was
first derived by Raga & Cantó (1998).

The values of τc for variabilites with λ ≪ 1 can be
obtained expanding equation (10) in a Taylor series
to first order in λ, giving:

sinωτc = −2λ . (11)

The relevance of the λ ≪ 1 regime for observed HH
jets is discussed in § 5.

3.3. The case with n ≥ 3

Solving equation (9) requires finding the roots
of a polynomial of order n + 2 in sinωτc, so that a
general analytic solution is not found. However, a
straightforward, approximate analytic solution valid
for small values of λ = v1/v0 can be obtained as
follows.

In the λ → 0 limit, from equation (9), we find

sinωτc,0 = ±

√

n− 1

n
. (12)

Now, for non-zero (but small) λ we propose roots of
the form

sinωτc = sinωτc,0 + h , (13)

with h ≪ sinωτc,0. Substituting this proposed solu-
tion into equation (9) and expanding the powers of
sinωτc to first order in h, we find that

h =
2λsn−1

c

λn(n+ 2)snc − λn(n+ 1)sn−2
c − 2n

, (14)

where sc = sinωτc. We now expand equation (14)
to first order in λ to obtain

h = −
λ sinn−1 ωτc,0

n
. (15)

Finally, combining equations (12), (13) and (15) we
obtain the roots of equation (9):

sinωτc = ±

√

n− 1

n

[

1∓
λ

n

(

n− 1

n

)n/2−1
]

, (16)

valid for small velocity amplitude to mean velocity
ratios λ = v1/v0 (see equation 7).

3.4. Initial positions of the working surfaces

The two roots of equation (9), with the small
λ = v1/v0 limits given by equation (16), give the
ejection times of fluid parcels which lead to the possi-
ble formation of working surfaces. For the two work-
ing surfaces to be actually formed, additionally con-
dition (5) or the less restrictive condition (6) have to
be satisfied. From equations (3), (4) and (7), we see
that in the small λ limit the two working surfaces
are produced at distances given by

xc =
v0(1 + 2λ sinn ωτc)

nλω cosωτc sin
n−1 ωτc

, (17)

calculated with the negative and positive values of
sinωτc given by equation (16).

The first working surface produced by an ejec-
tion variability period (see Figure 2 and equation
7) corresponds to the negative value of sinωτc, and
the second working surface to its positive value (see
equation 16). From equation (17) we see that the
first working surface is then formed (at a distance
x1) closer to the source than the second working sur-
face (at a distance x2 > x1), so that the condition
of equation (5) is not satisfied. However, the differ-
ence x2−x1 = (4/nω)| tanωτc| satisfies the condition
x2 − x1 ≪ x1, x2 (remembering that we are in the
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DOUBLE WORKING SURFACES 223

small λ regime). Therefore, the less restrictive con-
dition given by equation (6) is likely to be satisfied
regardless of the details of the equation of motion for
the first working surface.

In the following section, we present numerical so-
lutions of Burgers’ equation showing the formation
of working surface pairs, and the later mergers be-
tween them.

4. NUMERICAL SOLUTIONS FOR THE n = 3
CASE

In order to illustrate the characteristics of a jet
with “double working surfaces”, we have obtained a
numerical solution of Burgers’ equation:

∂u

∂t
+ u

∂u

∂x
= 0 , (18)

subject to an inflow condition

u0(t) = 1 + 0.1 sin3 t , (19)

at x = 0 (the outer boundary of the simulation be-
ing a free outflow). This variability corresponds to
equation (7) with n = 3, v0 = 1, v1 = 0.1 and ω = 1.

Burgers’ equation corresponds to a pressure-less
flow, and has discontinuities that correspond to two-
shock working surfaces in the Euler equations. The
equation of motion of the discontinuities of Burg-
ers’ equation corresponds to a ram-pressure balance
working surface in a constant density flow (see, e.g.,
Raga et al. 1990 and Raga & Kofman 1992), and
therefore generally does not agree with the motion
of a working surface modeled with the gas-dynamic
(Euler) equations. However, solutions of Burgers’
equation do illustrate the general properties of the
corresponding gasdynamic problems (in the case of
hypersonic flows).

We first use equations (16) and (17) to obtain
estimates for the distances from the source at which
the working surfaces are formed. With the param-
eters of the chosen ejection velocity variability (see
equation 19), we obtain a position x1 = 7.86 and
x2 = 9.72. We can compare the results of the nu-
merical simulation with these predictions.

The velocity structure resulting from the numer-
ical simulations is shown in Figure 3 for different
integration times. It is clear that two discontinu-
ities (corresponding to internal working surfaces) are
formed per ejection period. In the t = 36 velocity
structure (first frame of Figure 3), we see that the
first discontinuity (from one of the ejection periods)
has been formed at a position x ≈ 7.5, and in the
t = 40 structure (bottom frame of Figure 3), we see

Fig. 3. This graph shows the velocity vs. position ob-
tained at different times from a numerical solution of
Burgers’s equation with an ejection velocity (at x = 0)
of the form u0 = 1+ 0.1 sin3

t. The development of dou-
ble working surfaces, and the subsequent catching-ups
between the working surface pairs are clearly seen.

the second discontinuity forming at x ≈ 9. These
values are in approximate agreement with the pre-
dictions from the analytic model (see above).
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224 RAGA & CANTÓ

In the t = 40 velocity structure (bottom frame of
Figure 3), we also see that the two working surfaces
produced by one of the ejection periods (at a posi-
tion x ≈ 14) are about to merge. At larger distances
from the source, we see discontinuities that corre-
spond to merged pairs of working surfaces (see the
last discontinuity of the t = 36, 37 and 38 velocity
structures in Figure 3).

5. SUMMARY

We have explored the possible formation of mul-
tiple working surfaces in jets per ejection period of
a periodic ejection velocity variability. Given the
functional form of a proposed ejection velocity vari-
ability, it is clear that it produces double working
surfaces if it has two roots of equation (2) which
satisfy the criterion of equation (5). The ejection
variability will also produce double working surfaces
(per ejection period) if the roots satisfy the less strin-
gent criterion of equation (6), but this criterion is of
less straightforward application because it requires
solving the equation of motion for the faster work-
ing surface (see § 2).

We have then studied a variability of the form
u0(τ) = v0 + v1 sin

n ωτ (with odd n, see § 3), and
found that for n ≥ 3 one obtains two roots of equa-
tion (2), and that these two roots asymptotically ap-
proach the criterion of equation (5) for small values
of λ = v1/v0. We derived approximate analytic ex-
pressions for these roots and for the distances from
the source at which the resulting working surfaces
are formed.

This “small λ” approximation is in principle valid
for some of the knot structures observed along HH
jets. Examples of this are the chains of aligned knots
observed at distances of ≈ 1017 cm from the source
in HH 34 and HH 111, which for an interpretation
in terms of a variable jet model require amplitudes
of ≈ 10% of the mean velocity of the ejection (see
Raga et al. 2002). As shown in § 4, for λ = 0.1 the
analytic, small λ solution (described in § 3.2 and 3.3)
already gives good results.

We finally presented a numerical solution of
Burgers’s equation for a one-dimensional flow
with an ejection velocity variability of the form
u0(τ) = 1 + 0.1 sin3 ωτ . In this flow, we saw that
two working surfaces are formed per ejection period,
at the distances from the source predicted from the
analytic model.

In this numerical example, the two working sur-
faces that were produced have different velocities,
and therefore the faster working surface catches up
with the slower working surface as they travel away

from the source. The position at which this catching
up process occurred was approximately twice the dis-
tance from the source at which the working surfaces
were formed. At larger distances from the source,
one has single working surfaces (produced through
the merger of the double working surfaces resulting
from the ejection) per ejection velocity variability
period.

This characteristic is a general feature of dou-
ble working surfaces produced by periodic ejection
variabilities: they only remain double working sur-
faces for a certain time, and eventually merge into
one, as the faster working surfaces catch up with
the slower ones. Therefore, one would expect to see
a qualitative difference between the knot structures
at larger distances from the source (where we see
merged knots) and close to the point of working sur-
face formation (where we see the double working sur-
faces). Such an effect has been described by Raga
& Noriega-Crespo (2013) for the HH 34 jet, but no
comparable studies exist for other HH objects.

Because of this lack of clear application, our
present work should be regarded as a mathematical
curiosity relating to the formation of shock struc-
tures in periodically variable jets. The method which
we have described for evaluating the possible forma-
tion of double working surfaces (per ejection period)
might be useful for choosing appropriate forms for
an ejection velocity when trying to simulate specific
HH jets.

An interesting question is whether or not the an-
alytic approach used in this paper is applicable to
the case of magnetized jets. The criterion for work-
ing surface formation (see § 2) is valid for a ballis-
tic flow. In the case of a magnetized jet, a ballis-
tic regime is obtained if the flow is hypersonic and
also “hyperalfvénic” (i.e., with a jet velocity much
larger than the Alfvén velocity). Therefore, under
these conditions the analysis presented above should
also be valid. However, implicit in the discussion of
the subsequent evolution of the working surfaces (in-
volving “catching up” events) is the assumption that
they have a small spatial extent along the outflow
axis (i.e., that the two shocks in the working sur-
faces have relatively small separations). This is not
necessarily the case for magnetized jets, which (de-
pending on the radial configuration of the magnetic
field) can have internal working surfaces with sub-
stantial axial extents (see, e.g., De Colle et al. 2008
and Hansen et al. 2015). If this axial stretching is
large enough, it can also lead to mergings between
successive working surfaces. This effect (which is
nicely illustrated in Figure 2 of Hansen et al. 2015 for
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DOUBLE WORKING SURFACES 225

the case of axisymmetric, magnetized jets) was stud-
ied (for the case of 1D, non-magnetized flows, which
also develop axially extended working surfaces) by
Smith et al. (1997). Clearly, variable jets with axi-
ally extended, double working surfaces (which could
be obtained with one of the ejection variabilities dis-
cussed above, together with an appropriate magnetic
field configuration) will have a richness of behaviour
not appropriately described by the simple, “catching
up” description which we have used in the present
paper.
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UNAM grants IN109715 and IG100516. We ac-
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