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Abstract

We present the Deep-learning Transient Astronomical Object (Deep-TAO), a dataset of 1,249,079 annotated images from the Catalina
Real-time Transient Survey, including 3,807 transient and 12,500 non-transient sequences. Deep-TAO has been curated to provide a clean,
open-access, and user-friendly resource for benchmarking deep learning models. Deep-TAO covers transient classes such as blazars,
active galactic nuclei, cataclysmic variables, supernovae, and events of an indeterminate nature. The dataset is publicly available in FITS
format, with Python routines and Jupyter notebooks for easy data manipulation. Using Deep-TAQ, a baseline Convolutional Neural Network
outperformed traditional random forest classifiers trained on light curves, demonstrating its potential for advancing transient classification.

Resumen

Presentamos Deep-learning Transient Astronomical Object (Deep-TAO), un conjunto de 1,249,079 imagenes anotadas del Catalina
Real-time Transient Survey, que incluyen 3,807 secuencias transientes y 12,500 no transientes. Deep-TAO ha sido disefiado como
un recurso limpio, de acceso abierto y facil de usar, ideal para evaluar y comparar modelos de aprendizaje profundo. Incluye eventos
transientes como blazares, nicleos galacticos activos, variables cataclismicas, supernovas y eventos de naturaleza indeterminada. El
conjunto de datos esta disponible publicamente en formato FITS, acompanado de rutinas en Python y cuadernos de Jupyter que facilitan
su uso. Utilizando Deep-TAO, una red neuronal convolucional basica superé el desempenio de clasificadores tradicionales basados en

bosques aleatorios entrenados con curvas de luz, demostrando su potencial para mejorar la clasificacién de eventos transientes.
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1. Introduction

A primary challenge in time-domain astronomy is the
detection and classification of transient astronomical
events. In recent years, methods for automating these
processes have seen remarkable improvements in both
complexity and computational efficiency, driven by the
exponential growth of datasets requiring timely analysis
(Kaiser, 2004; Law et al., 2009; Smartt, S. J. et al., 2015;
Chambers et al., 2016; Martinez-Palomera et al., 2018;
Bellm et al., 2019; Dyer et al., 2020; Nidever et al., 2021).
Machine learning (ML) (Wyrzykowski et al., 2014;
D’Isanto et al., 2016; Gieseke et al., 2017; Neira et al.,
2020; Sanchez-Saez et al., 2021; Van Roestel et al., 2021)
and deep learning (DL) approaches (Gieseke et al., 2017;

Cabrera-Vives et al., 2017; Carrasco-Davis et al., 2019;
Muthukrishnaetal., 2019; Gémez et al., 2020; Sinchez-Saez
etal., 2021; Allam & McEwen, 2024; Van Roestel et al., 2021;
Killestein et al., 2021) have demonstrated their capability
to provide rapid and accurate solutions for transient
classification tasks, offering significant advancements over
traditional methods.

The further development and optimization of ML
and DL algorithms critically depend on the availability
of large-scale, high-quality, and representative datasets.
These datasets can be constructed from real observational
data (Neira et al, 2020), synthesized light curves
(Carrasco-Davis et al.,, 2019), or image-based data
derived from real (Scalzo et al., 2017) or simulated
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observations (Carrasco-Davis et al., 2019). The diversity
and realism of these datasets are essential for improving
the generalizability and robustness of classification models
in the context of astronomical transient phenomena.

The image-based datasets that can be used to test and
train new DL applications usually present some limitations.

1) Restricted access. Some datasets are private, and only
survey collaborators can access them. This limits the
possibilities for a broader group of scientists to use the
dataset to improve DL techniques.

Inconvenient access. Some surveys have set up public
websites to access their data. However, sometimes
the system is designed to retrieve information about
individual objects (Drake et al., 2009; Scalzo et al.,
2017; Nidever et al., 2021) and not large samples.
This makes it inconvenient to compile the full dataset
required for DL training.

Unrealistic images. Although other public, open
access datasets exist, they are based on simulated
images (Carrasco-Davis et al., 2019). This limits the
realism required to optimally train DL architectures.

Incomplete labels. There are public, easy-to-gather,
and realistic datasets that do not have labels on their
data (Smartt, S. J. et al., 2015). These labels are
required to train the supervised DL architectures.

2)

3)

4)

To date, no dataset for DL transient classification has
been made easily accessible to the public in the form of a
fully labeled catalog based on observations.

The purpose of this study is to present a dataset to
fill this gap. We denominate this dataset Deep-TAO,
for Deep-Learning Transient Astronomical Objects.
Deep-TAO was built using public data from the Catalina
Real-Time Transient Survey (CRTS) (Drake et al., 2009),
an astronomical survey searching for transient and highly
variable objects. We developed a procedure for extraction
and transformation from CRTS into a homogeneous data
set of thousands of objects that can be used to train DL
algorithms and establish benchmarks.

The remainder of this paper is organized as follows.
In § 2 we describe the CRTS, together with the selection
and compilation procedures. In § 3 we describe the main
features of Deep-TAO, including its structure. In § 4 we
describe how to connect our dataset with MANTRA (Neira
etal., 2020), a light curve-based dataset built from the CRTS.
Finally, in § 5 we demonstrate how Deep-TAO can be used
in deep learning-based classification tasks, and then we
provide a brief discussion and summary.

2. Observational Inputs to build Deep-TAO

2.1. The Catalina Real-Time Transient Survey and the
Catalina Sky Survey

We retrieved the images for Deep-TAO from the public
catalogs of the Catalina Real-Time Transient Survey (CTRS
Drake et al., 2009; Mahabal et al., 2011), an astronomical
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survey for transients and highly variable objects. The area
covered by the CRTS is 33,000 square degrees, and it has
been observing the sky since 2007 with three telescopes:
Mt. Lemmon Survey (MLS), Catalina Sky Survey (CSS),
and Siding Spring Survey (SSS). We used data from the CSS
telescope, an f /1.8 Schmidt catadioptric equipped with
a 111-megapixel CCD detector. The CSS telescope and
detector have a scale of 2.5 arcseconds per pixel, providing
an 8 square degrees field of view. Observations were made
on a grid of adjacent fields. The survey covered 4,000 square
degrees per night with a limiting magnitude of 19.5 in the
V-band. Each observation consist of one image obtained
using an exposure time of 30 seconds.

2.2. Transient catalogs from the CRTS and the CSS

We built Deep-TAO from the public transient catalog
published by CRTS. The data reports five classes: blazars
(BZ), active galactic nuclei (AGN), cataclysmic variables
(CV), supernovae (SN), high proper motion stars (HPM),
and other events of unknown nature (Drake et al.,
2009). The transient catalog lists Right Ascension (RA),
Declination (Dec), V-band magnitude, discovery date,
classification class, and light curve points.

The CSS catalog contains observations from 2003 to 2012.
The selected fields were typically visited four times at night,
and the median total number of visits over 10 years was
20. Each CSS image (of size 4, 110 X 4, 096 pixels covering
an area of 29,500 square arcminutes) is divided into 1,156
smaller images called cutouts stored in the Flexible Image
Transport System (FITS) format. Each cutout is about
120 x 120 pixels and represents an area of 5 X 5 arcminutes.
Each cutout file stores the pixel intensities, the date on
which the image was captured, a field identifier, and a
number identifying the order of the image in the sequence
of observations taken on a given night.

2.3. Building Regions of Interest

We used the cutouts to build a Region of Interest (Rol)
centered on an object of interest. We designed Rols to
be squares of 64 X 64 pixels size centered on a RA/Dec
coordinate of interest. This requires downloading the
cutouts, assembling them into a single image, and finally
cutting out the Rol around the RA/Dec of interest.

We refer to the time-ordered set of Rols around the same
coordinates as a Rol sequence. We built Rol sequences
over a three-year interval, where the second year always
included the date of maximum brightness. During this
period, the time spacing between images was not uniform.
The intervals ranged from days to months.

We queried the Rol sequences using web scraping
techniques to automatically access and download the
images using the desired RA/Dec position as an input. This
process comprises five steps:

1) Download all the available cutouts that overlap with
the input RA/Dec in a time span of three years for each
object.
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For each cutout:

Locate the object
in pixel
coordinates:
define it as the
center of a squar
around it

|

Count the number of
neighbors (1 or 3) required
to extract a Rol around the
object

Search the neighbor cutouts
in the same date of the
original cutout and download

Concatenate and extract Rol

Figure 1. Overview of the search procedure to acquire the image sequences of transient objects.

2) For each cutout, locate the RA/Dec location to define
a region of interest (Rol) around that coordinate.

3) Count the number of neighboring cutouts (one or
three) required to build the Rol.

4) Query for the neighboring cutouts. If any of those does
not exist, the Rol is not built.

5) Concatenate all cutouts to extract and store the Rol.

Figure 1 illustrates these steps. It took 11,000 CPU hours
to query the CRTS/CSS database to build the full Deep-TAO
dataset.

Transient objects are available in the CRTS catalogs.
However, a catalog of non-transient objects is not available.
To define the Non-Transient RA/Dec locations, we used
transient source cutouts. All sources in the cutout of
a transient at any date were detected. Then, sources
at a distance greater than a threshold of 33 pixels from
the transient are considered as a possible non-transient
candidate.

This threshold ensures that the transient object does
not appear in the Rol of the non-transient candidate. For
each non-transient candidate, we computed its RA/Dec
coordinates to build all the Rols on the same dates as
the parent transient sequence. Using this procedure, we
compiled a total of 12,500 non-transient locations.

3. Deep-TAO Description

Figure 2 shows a grid of illustrative examples for different
transients and Non-Transients in Deep-TAO. The images
in that figure are a subset of the full Rol sequence for each
object, the temporal spacing between images is uneven, and
the time stamps are not uniform across different objects.
To ease visualization, the pixel values were renormalized
to have the same range across all images.
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In all the cases shown in Figure 2, the variability of the
central source was easy to spot by eye. This illustrative
example also shows features (i.e. trails at the end of the
Cataclysmic Variable sequence, overall brightness change
in the first half of the Other Objects class) that might
come from fluctuating observational and instrumental
conditions, representing the realism of Deep-TAO.

In the following sections, we describe the overall
Deep-TAO statistics, the data model used to store
the information in the public repositories, and the
Python-based tools to interact with Deep-TAO files.

3.1. General Statistics

Table 1 summarizes the global statistics for the Deep-TAO
dataset. The first row shows the total number of targets
in the original CRTS catalog. The second row indicates
the number of targets for which we managed to recover a
Rol sequence. Some transients in the original catalog were
not included in Deep-TAO out due to the impossibility of
having the transient centered in the cutout. The third row
indicates the total number of Rol extracted for each class.

Figures 3, 4, 5 present some cumulative statistics
computed over the Rol sequences for each class. Figure 3
shows the cumulative distribution of the number of images
by sequence. The left panel shows all the transient classes,
and the right panel compares transients and non-transients.
This figure shows that the median value is approximately
100 Rols per sequence. The shortest sequence had five
Rols, and the longest had approximately 300 Rols. For
non-transient sequences, there was a median of 70 Rols,
whereas for transients, the median was 100 Rols per
sequence.

Figure 4 shows the results for the average Rol signal.
Here, we define the signal as the sum of all CCD counts
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Figure 2. Sample images in Deep-TAO. Each row corresponds to a sample from a different class. The temporal spacing between
consecutive images varied for each example. Images were normalized for visualization.
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Figure 3. Cumulative distribution of Rols per sequence. (Left) The distributions are split across the transient classes. The median was
approximately 100 images per sequence. (Right) Distributions are split between transient and non-transient objects. The median for

non-transients is around 70 images per sequence.

Table 1. General statistics of Deep-TAO data set"

BZ AGN ()% OTHER SN Total Transients = Non-Transients Total
Targets in CRTS 270 651 987 1,054 1,723 4,712 - 4,712
Targets in Deep-TAO 239 606 772 818 1,372 3,807 12,500 16,307
Total Rols 23,429 66,998 73,739 74,536 146,847 385,549 863,530 1,249,079

"The first row corresponds to the transients included in the public CRTS transient catalog. The second row represents the number of
objects for which a sequence of Rols can be retrieved over a three-year observation period. The last row is the total number of Rols

included for each class.
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Figure 4. (Left) Cumulative fraction as a function of the median signal for the objects in each transient class and all transients objects
(continuous line). (Right) Cumulative fraction between transient and non-transient objects. The shapes of these classes were similar.

In both figures the media of the signal is around 2000.
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Figure 5. (Left) Cumulative distribution of the average signal-to-noise. for the object in each transient class and all transient objects
(continuous line). The media of the signal/noise for all transient objects is approximately 10. (Right) Cumulative fraction between
transients and non-transients objects. In both cases the media of signal/noise is around 20.

across the Rol. The left panel corresponds to all transient
classes, whereas the right panel compares transients and
non-transients. This figure shows that all transient classes
and non-transients have similar intensity distributions.

Figure 5 shows a comparison of the average
signal-to-noise (S/N) distribution for all transient

classes (left) and transients versus non-transients (right).

We estimated the signal-to-noise ratio for an Rol as the
ratio between the sum of all CCD counts and the standard
deviation of the CCD counts.

We found that the average S/N spans almost two orders
of magnitude, ranging from 1 to 100. For transients, the
median of the average S/N ranged between 6 and 20 across
all classes, with some differences between classes. In
contrast, the distributions of Transients and Non-Transients
were virtually the same.
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3.2. Data Model

The Deep-TAO data set is allocated on GitHub into two
different repositories, one for transients objects' and other
for non-transients®. The transient repository contains three
main folders: data, paper, and mantra.

The data folder contains all the transient sequences
separated in subfolders by class (AGN, BZ, CV, OTHERS,
and SN), each subfolder contains the sequences stored in
FITS files. A single FITS file stores all the Rols associated
with a transient event, and the file name is the CRTS
identifier. Each file contains a header, and the FITS
header in each file has minimal identifying information,
such as the CRTS_ID unique identifier, the J2000 RA/Dec
coordinates, the number of Rols (N_Images) in the
sequence, and the Universal Time UT_Date associated with
the discovery date. The full list of fields included in the
header is presented in Table 2.

1 https://github.com/MachineLearningUniandes/TAO_transients
2https://github.com/MachineLearningUniandes/TAO?non— transients
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Table 2. FITS header of the transient files

Header Dict Description Type
CRTS_ID Catalina Real-time Transient Survey ID str
RA_(J2000) Right Ascension (degrees) float
Dec_(J2000) Declination (degrees) float
N_Images Total number of images for CRTS ID int
UT_Date UT Discovery Date (YYYYMMDD) float
Mag Unfiltered CSS magnitude float
CSS_Images Pre and post-discovery images ID int
SDSS Covered by SDSS DR-12 (yes/no) str
Others ID to other image data at the location (PQ, DSS, 2MASS, SDSS) int
Followed P60 follow up (yes/no) str
Last Last Observation date str
LC Current CSS lightcurve int
FC Finding chart (yes/no) str
Class Transient classification str
Lightcurve and Image Sequence for the
AGN CS5130627:001809+274920
19.0 . ’
18.5 s * 4
SR TR UANETE S RN T TR S O
180{ . ° _— AR X - SHEER'
. b R SIDC I $
17.5 R :
53500 54000 54500 ESOD(I)VUD 55500 56000 56500

MJD: 55889.23712 MJD: 56196.19167 MJD: 56223.14610  MJD: 55722.44231

MJD: 56237.25093

M)D: 55486.27224  MJD: 55952.11591  MJD: 55507.25223  M)D: 56215.20459  M|D: 56186.43750

Figure 6. Lightcurve and examples of the image sequence for the AGN CSS130627:001809+274920 from MANTRA and Deep-TAO
obtained using the Connection_MANTRA Jupyter notebook. The red cross correspond to the images plotted bottom in the figure.

The first HDU (extension 1) in the FITS files is a 2D array
with the columns listed in Table 3. This array contains
information for each Rol in the sequence, such as the HDU
extension for each Rol and the observation date. Starting
from HDU 2 onward to HDU N_Images+1, each HDU
contains an Rol as an integer array of size 64x64.

The second main folder is paper, which contains
Figures 3, 4, 5 which describe the general statistics of
Deep-TAO. This folder also contains a Python-based tool to
reproduce these results. This tool is explained in the next
subsection.

The mantra folder contains the Figure 6, which
shows an example of how to connect Deep-TAO with
MANTRA (Many ANnotated TRAnsients), an annotated
Machine-learning Reference lightcurve dataset in the
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V-band also built from the CRTS (Neira et al., 2020). More
details are provided in Section 4.

Finally, the non-transient repository only contains the
data folder with the FITS files of the non-transient
objects. In contrast to the header of a Transient FITS file,
the non-transient FITS header allocates the information
of Table 4, which includes the CRTS_ID, the RA/Dec
coordinates, the number of images in the sequence, and
the image source from which it was extracted.

The first HDU in each FITS non-transient file allocates
the information in Table 5: the HDU_Extension for each
Rol, the date of observation, the MJD, the Field_ID, and
the cutout.
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Table 3. Identifiers stored first HDU: Transient files”

Key Description Type
HDU_Ext HDU extension of the Rol (From 2 to N_Images+1) int
Set_Number Stands for the sequence (or set number) str
Date Date of observation (YYMMMDD) str
MID Modified Julian Date float
Field_ID Field identifier str
Obs_In_Seq Refers to the observation’s number in the sequence str
Cutout Cutout matrix location. Each cutout covers an area of about 5 X 5 arcminutes str
*Basic information in the first HDU about the image sequence in each transient FITS file.
Table 4. FITS header of the non-transient objects
Header Dict Description Type
CRTS_ID Catalina Real-time Transient Survey ID str
RA_(J2000) Right Ascension (degrees) float
Dec_(J2000) Declination (degrees) float
N_Images Total number of images for CRTS ID int
Img Ref Image of reference where the non-transient object was identified str
Table 5. Identifiers stored first HDU: Non-transient files”
Key Description Type
HDU_Ext HDU extension of the Rol (From 2 to N_Images+1) int
Date Date of observation (YYMMMDD) str
MID Modified Julian Date float
Field_ID Field identifier str
Cutout The cutout matrix location Each cutout covers an area of about 5 X 5 arcminutes str

*Basic information in the first HDU of the Non-Transient objects about the image sequence in each FITS file.

3.3. Python-based tools

In the folder data of the transients repository, there
is a Jupyter notebook to manipulate the data. The
Read_dataset Jupyter notebook shows the mechanism
for reading the FITS files for transient and non-transient
objects. In the folder paper in the same repository, we
provide the Explore_data set Jupyter notebook, this
shows how to compute some statistics from Deep-TAO to
obtain the Figures 2, 3,4 and 5, assuming that the data/NON
folder from the non-transient’s repository is located in the
data folder of the transient’s repository. This notebook
also creates a plain text file in the paper folder called
statistic.csv. This file has 16,307 rows, one by object
in Deep-TAO, and four columns with the class name class
(BZ,AGN,CV,0THER,SN, or NON), the number of images
by sequence nimages_seq, the median of the signal/noise
measure signal_noise_median, and the median of the
signal signal_median.
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4. Linking Deep-TAO images to MANTRA
lightcurves

In Neira et al. (2020), the authors presented MANTRA,
an annotated machine-learning reference light curve
dataset also built from the CRTS. MANTRA contains 4,369
transients and 71,207 non-transients as a plain text file
to facilitate a standardized quantitative comparison of
astronomical transient event recognition algorithms. The
classes included in MANTRA are supernovae, cataclysmic
variables, active galactic nuclei, high proper motion stars,
blazars, and flares. The data set is publicly available and
easy to access °.

In the mantra folder of the Deep-TAO transients
repository”*, we provide the Connection_MANTRA Jupyter
notebook to link the image sequence from Deep-TAO to the
lightcurve from MANTRA. This connection is established
through the unique CRTS ID. For non-transients, this
connection between images and light curves cannot be

3 https://github.com/MachineLearningUniandes/MANTRA
4https://github.com/MachineLearningUniandes/TAO?transiems
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Table 6. F-measure for the binary task”

Set Data Model

Transient

Non-Transient F1(u+o0)

Validation Images TAO-Net

74.46

95.06 84.76 + 10.30

"F-measure for each class in the validation set for the binary task. The last column reports the average F-measure.

Table 7. F-measure for the transient classification”

Set Data Model BZ AGN Ccv OTHER SN F1(u+o0)
Validation Light curves RF 19.74 42.67 53.60 56.06 55.36 4549 +£13.75
Validation Images CNN 25.17 49.77 59.48 64.04 63.39 52.37 £ 14.53

“The last column reports the average F-measure of the 5 transient categories.

established between Deep-TAO and MANTRA because
both have different non-transient objects.

Figure 6 shows an example of an AGN. Using the MJD
information, it is possible to connect points in the light
curve to images in the sequence. In the light curve of
Figure 6, the red crosses correspond to the images plotted
below in this figure. Due to the constraints in the Rol
construction (Section 2), not all points in the MANTRA
lightcurve have a corresponding image in Deep-TAO.
Another reason is that Deep-TAO includes only three-year
intervals of observations.

5. Example of a Deep-TAO application

Here, we show some examples of Deep-TAO applications
using a Convolutional Neural Network (CNN) to gauge its
performance on three basic classification tasks:

1. binary classification between Transients and
Non-Transients.

2. fine-grained classification into five transient classes
(Blazar, AGN, Cataclysmic Variables, Supernovae, and
Other)

3. fine-grained classification into five transient classes

and Non-Transients as a sixth class.

We evaluated all tasks using metrics that were robust to
class imbalances. For each class, we report the maximum
F-measure (F1) from the Precision-Recall (PR) curve that
we constructed by setting different thresholds on the output
probabilities of each class. The global performance is the
F1 average across individual classes, with an uncertainty
computed as the standard deviation. In all experiments, we
used 70% of Deep-TAO data for training, 25% for validation,
and 5% for testing.

The CNN used here is based on the previous work
by Gomez et al. (2020). They used TAO-Net, a neural
network composed of two modules. First, a CNN
based on the DenseNet architecture is used to extract
a feature representation, and then a Recurrent Neural
Network (RNN) that uses these representations to solve the
classification task. Here, we only use the first part, a CNN
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based on a Densely Connected Convolutional Network
(DenseNet) (Huang et al., 2017) with L = 70 layers and
a growth rate k = 32.

We model temporal information by selecting images
from the complete sequences. We considered images at
three different dates in sequential order, such that they
reflect differences in brightness for transient classes. We
included the observation date in the three-year period
when the transient object had the maximum brightness
and one observation before and after that date. For the
Non-Transient class, we considered the first, middle, and
last dates of the sequence of ordered images. At each date,
we took the first available observation and then merged
the temporal information by sampling images from the
complete sequences at three different dates in sequential
order. This selection reflects the evolution of temporal
information, evidencing the differences in brightness for
transient classes.

Table 6 summarizes the results of the binary classification
tasks. As expected, it was considerably easier to classify a
sequence as non-transient (F1 of 95.06) than as transient
(F1 of 74.46).

For the five-class transient classification task, we
performed an experiment that consisted of the traditional
approach for transient classification using the light curves
from the CRTS. We computed the discriminatory features
from the light curves to train a Random Forest (RF)
classifier. All details on feature extraction and the RF
classifier can be found in Neira et al. (2020). These results
are equal to those of Gomez et al. (2020) because we share
the same dataset and algorithm parameters.

Table 7 lists the F-scores of the transient classification
tasks. The results show that classification with images
using a CNN is a better option that makes a classification
with light curves using a RF algorithm. With RF on the
light curves, the best classification was for the OTHER class
with 56.06, followed by the SN class with 55.36. The worst
is the BZ class with 19.74, and the average F1-score is 45.49.
The CNN on images is better with an average F1-score of
52.37, where the best classification is for OTHER with 64.04,
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Table 8. F-measure for the multi-class detection”

Set Data Model BZ AGN (8\Y

OTHER SN Non-T F1(u+o0)

Validation Images CNN 21.82 37.45 54.76

40.22 46.59 95.29 49.36 + 22.84

"The last column reports the average F-measure of the 6 classes.

followed by SN with 63.39, and the worst classification is
for BZ with 25.17.

Finally, in Table 8 we present the F-scores of the
multi-class classification problem, which includes the five
transient classes and the non-transient class using only the
CNN method with images. Compared with the previous
task, the overall performance was worse for every transient
class, indicating that this task is more difficult when
non-transient objects are included. The F-measure shows
that the best classification is for the non-transient class,
with a score of 95.29. The best transient class classified
correctly was the CV, with a score of 54.76, followed by the
SN class, with a score of 46.59.

6. Conclusions

There is increasing interest in automated methods for
detecting transient sources. Some of these methods are
based on Deep Learning techniques that require the use of
large, realistic datasets for training. Publicly available and
easily accessible datasets can trigger the development of
new deep learning applications for transient detection.

In this study, we present such a dataset. We named it
Deep-TAO, for deep-learning transient astronomical objects.
This is the first public and easily accessible dataset based
on real images that can be used to train and improve
Deep Learning algorithms for transient classification.
The dataset is a compilation of images extracted and
transformed from the Catalina Real-Time Transient Survey
(CRTS). Deep-TAO includes 3,807 transient and 12, 500
non-transient objects with a total of 1,249,079 real
astronomical images. Deep-TAO is publicly available at
https://github.com/MachineLearningUniandes/.

We demonstrated the utility of Deep-TAO using a
set of deep learning experiments and comparisons
against a machine learning algorithm. We explored
the transient versus non-transient task, the fine-grained
multi-classification task between five transient classes,
and finally a fine-grained multi-classification task with six
classes, five transient classes, and non-transient as another
class.

In the three tasks we used the same architecture, a
Densely Connected Convolutional Network with L = 70
layers and a growth rate k = 32 motivated by the more
complex architecture proposed by Gémez et al. (2020).
In the fine-grained multi-classification task between five
transient classes, we compared a classification based on a
CNN with images and the classification of light curves with
a random forest with 200 trees based on the work by Neira
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et al. (2020). The results showed that CNN consistently
performed better.

Deep-TAO is public with files in the FITS format to
facilitate its usability in different projects. The realism
of Deep-TAO provides an additional motivation to train
new learning-based models to be used by next-generation
experiments in time-domain astronomy, and hopefully, it
will also motivate the creation of more datasets with a
similar structure: realistic, fully labeled, open, and easy
to access.
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m Data Availability

The Deep-TAO data set is publicly available at https://gi
thub.com/MachineLearningUniandes/ into two different
repositories, one for transients objects (https://github.com
/MachineLearningUniandes/TAQO_transients) and other
for non-transients (https://github.com/MachineLearning
Uniandes/TAO_non-transients).
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