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Abstract

This study presents an integrated spatial and temporal analysis of night sky brightness transitions, classified into Bortle classes using
the MOLUSCE plugin. Future projections for 2029 and 2041 were generated based on remote sensing data from 2017 and 2020. The
results indicate that the “Excellent Sky” and “Typical Dark Sky” classes may decrease by 100% and 56%, respectively, while the “Rural Sky”
class could lose approximately 284,679 km2. In contrast, the “Rural-suburban Transition” class is projected to grow by 73%, with smaller
increases in the “Suburban”, “Bright Suburban”, “Suburban/urban Transition”, and “Urban Center” classes. The “Urban Center” class shows
a steady growth rate of 0.004%. These trends suggest a continued spread of light pollution into rural areas. The results provide valuable
input for national and local authorities to anticipate future light-pollution patterns and develop effective mitigation strategies.

Resumen

El estudio presenta un enfoque integrado para el análisis temporal y espacial de las transiciones de brillo del cielo nocturno, clasificados en
clases de Bortle, utilizando el complemento MOLUSCE. Al combinar datos de teledetección, análisis de cambios en el área y evaluación
de la contaminación lumínica, este método produce proyecciones futuras para los años 2029 y 2041 utilizando los conjuntos de datos AL
de 2017 y 2020 con la herramienta Molusce. Las tendencias observadas entre 2017 y 2041 muestran que las clases “Cielo excelente” y
“Cielo Oscuro Típico” están en riesgo de una disminución del 100% y 56% respectivamente, mientras que se proyecta que la clase “Cielo
Rural” perderá aproximadamente 284,679 km2. Se espera que la clase “Transición rural-suburbana” aumente en un 73%, mientras que las
clases “Suburbana”, “Suburbana brillante”, “Transición suburbana/urbana” y “Centro urbano” experimenten un aumento relativamente
menor. Se observó una tasa de aumento casi constante (0.004%) en la clase “Centro urbano”. Estas tendencias evidencian que la
contaminación lumínica se está propagando hacia las zonas rurales del área de estudio. Los resultados obtenidos deberían servir de
ayuda a las autoridades nacionales y locales para planificar las medidas necesarias mediante la predicción del posible curso futuro de la
contaminación lumínica.
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1. INTRODUCTION

Artificial light at night (ALAN) is the main cause of light
pollution, which is particularly noticeable in urban, industrial,
and tourist areas where the human population and economic
activities are concentrated. ALAN is known to vary in relation
to demographic and economic indicators, such as population
(Aksaker et al., 2020) and Gross Domestic Product (GDP) (Yerli
et al., 2021). Studies have shown that the areas affected by ALAN
are increasing yearly and that light pollution is increasing by 6%
annually worldwide (Hölker et al., 2010). Light pollution has
significant adverse effects on astronomical observations (Falchi
et al., 2011);(Cinzano et al., 2000);(Green et al., 2022); (Varela
Perez, 2023); economic activities (Gallaway et al., 2010);(Mitchell

& Gallaway, 2019);(Yılmaz & Özdemir, 2021);(Uchima-Tamayo
et al., 2025), ecological systems (Longcore & Rich, 2004); (Hölker
et al., 2021);(Hoffmann et al., 2022) and human health (Cho
et al., 2015);(Svechkina et al., 2020); (Deprato et al., 2024). It is
important to acknowledge and implement preventive measures to
reduce the effects of light pollution. Remote sensing methods and
Geographic Information System (GIS) infrastructures are widely
used for the detection, spatial, and temporal analysis of light
pollution (Yılmaz, 2024). Artificial light signals detected remotely
at night serve as indicators of the scope of human activities across
different times and locations (Chen & Nordhaus, 2011); (Elvidge
et al., 2012); (Huang et al., 2014). Day/night images (DNB)
acquired with the Visible Infrared Imaging Radiometer (VIIRS)
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Figure 1. The political boundaries of Brazil are highlighted by thick red lines on the world map with country boundaries separated by black lines, and
the AL map of the study area in 2023. the black areas on the map, created from the VIIRS-DNB dataset (day/night band), represent rural areas with low
night sky brightness (light pollution), and the white dots represent the brightness generated at night in areas with high human activity.

provide detailed information on artificial night light caused by
human activities with a large radiometric coverage area and high
spatial resolution (Miller et al., 2006); (Hillger et al., 2013); (Small
et al., 2013); (Elvidge et al., 2013); (Falchi et al., 2016). This
information allows remote sensing datasets to represent the same
geographic location of a particular pixel over time, so that changes
in the environment can be captured (Jiang & Shekhar, 2017), and
pixel-level changes can be linked to temporal steps in determining
activities and changes that occur within and between years (Roy
et al., 2014). For these reasons, the information provided by VIIRS
(DNB) thematic layers has great potential for spatiotemporal
analyses (Li et al., 2013); (Ma et al., 2014); (Shi et al., 2014);
(Jing et al., 2016); (Sharma et al., 2016); (Levin, 2017). This
potential can be revealed using GIS infrastructure that focuses
on spatial-temporal relationships (Shaw et al., 2016). The Bortle
Sky Brightness Classes are a widely used classification system
to quantify the effects of artificial light pollution and describe
the characteristics of dark skies (Bortle, 2001). These classes can
be integrated with regional maps to analyze the impact of light
pollution on the environment and provide an important basis for
understanding temporal change trends. In this context, the plugin
Molusce (Modules for Land Use Change Evaluation), used in the
QGIS (Quantum GIS) platform, is an effective tool for analyzing
changes between classes, evaluating transition potentials and
temporal dynamics of spatial changes, and generating future
projections. This plugin predicts spatial shifts by estimating the
current state of a pixel based on the initial state, the likelihood
of the surrounding neighborhood, and transition laws. It also
accurately represents the nonlinear spatial stochastic field change
processes and generates complex patterns (Saputra & Lee, 2019).
The pixel-based Molusce infrastructure enables temporal and
spatial analysis of sky brightness datasets in raster format. In this
study, an integrated approach to the temporal and spatial analysis
of night sky brightness pixel transitions categorized into Bortle
classes using the MOLUSCE plugin is presented. By combining
remote sensing data, field change analysis, and light pollution
assessment, this method aims to create future forecasts using
the Molusce tool. The results obtained will assist national and
local authorities in planing measures to address light pollution by
predicting its future course.

2. METHODOLOGY

2.1. Study area
When defining the study area, it was important to encompass all
levels of the Bortle classification of sky brightness from 2017 to
2023. During the worlwide scan, a region with this characteristic
was pinpointed in Brazil. Brazil is the fifth largest country in
the world and has a population of more than 203 million (IBGE,
2025)1. Brazil consists of 26 states and one federal district. The
study area was formed by merging the borders of the states of
Roraima, Amazonas, Acre, and Rondônia in the north of the
country (see map in Figure 1). The populations of the states of
Roraima, Amazonas, Acre, and Rondónia are 636 707, 3 941 613,
830 018 and 1 581 196 respectively (IBGE, 2025). The four states
cover an area of around 2,321,663 𝑘𝑚2 between the coordinates 5◦
17’ 7.21” N, 60◦ 10’ 44.48” W and 13◦ 35’ 32.1” S, 60◦ 39’ 22.32” W.
Approximately 40% of the world’s tropical rainforests are located
in the Amazon region (Verweij et al., 2013). Geographically,
these states are mainly covered by the Amazon rainforest, the
largest tropical rainforest in the world. Astronomically, the
geographical location of these states in the Amazon Basin has
a negative impact on astronomical studies, as the cloud cover is
generally relatively high, and the high humidity negatively affects
astronomical transparency (de Sá et al., 2019). However, when
suitable atmospheric conditions prevail, forests limit people’s
freedom of movement and provide an Excellent Sky without
artificial light pollution.
2.2. Data Collection
Country and state boundaries were downloaded from GADM
(Global Administrative Areas Database2). NTL (Nighttime
Lights) data for the years 2017, 2020 and 2023 were downloaded
from the Day-Night Band (DNB) dataset of the Visible and
Infrared Imaging Suite (VIIRS) of JPSS satellites hosted by the
Earth Observation Group (EOG)3. The process steps of the
methodological framework shown in Figure 2, which we will
discuss in more detail in the following sections, were followed.
2.3. Data management
The VIIRS DNB, Defense Meteorological Satellite Program
(DMSP), measures the radiation of the upper atmosphere in the
1https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2102110
2https://gadm.org/
3https://eogdata.mines.edu/products/vnl/
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Figure 2. Diagram of the methodical workflow.

wavelength range of 0.5-0.9 𝜇m between the visible and near-
infrared light spectrum during the night. This measurement was
made at a wavelength of about 0.7 𝜇m and a spatial resolution of
750m (Schueler et al., 2002). VIIRS DNB radiationmeasurements
have a high calibration accuracy, and the calibration uncertainties
reported for Suomi NPP VIIRS DNB are between 2% and 6%
(Chen et al., 2017). The NPP-VIIRS DNB data were obtained by
regular scans worldwide at approximately 01:30 and 13:30. NPP-
VIIRS DNB offers higher radiometric accuracy thanks to its on-
board calibration and has a dynamic range of 3.10−9 𝑛𝑊𝑐𝑚−2𝑠𝑟−1
to 0.02 𝑛𝑊𝑐𝑚−2𝑠𝑟−1, which enables the detection of very small
amounts of light (Liao et al., 2013). This feature allows for the
detailed mapping of artificial light sources (Falchi et al., 2016).
This capability is crucial for determining the ideal regions for
astronomical studies by identifying areas with minimal light
pollution. The VIIRS cloud mask dataset in GEOTIFF format and
with the extension “vcm-orm-ntl” was used in this study, based
on the version by Elvidge et al. (2021), where non-artificial light
sources were filtered, outliers removed, and night lights included.
Data below the VIIRS DNB detection limit of 3 𝑛𝑊𝑐𝑚−2𝑠𝑟−1 (Liao
et al., 2013) are considered noise and have been filtered out based
on this threshold prior to analysis. The unit change was made
using equation (1) so that the VIIRS thematic strata could be
arranged according to the Bortle scale.

𝑆𝑄𝑀 = 20.0 − 1.9 log(AL) (1)

It was converted to MPSAS (magnitude per square arcsecond)
using equation (1) . The study area boundaries were cropped
using the ArcGIS 10.8 infrastructure after data collection and
assigned to the WGS 1984 projection.

2.4. AL Bortle classification

The Bortle scale is a numerical rating system used to evaluate the
brightness of the night sky from an observation point. This scale
was developed to measure the ability to observe celestial bodies
and the effects of light pollution on such observations. This scale,
developed by John E. Bortle and released in 2002, provides a range
of categories starting from level 1, denoting the darkest sky, to level
9, indicating the brightest sky. As shown in Table 1, each level is
different from the others. In addition, it should not be forgotten
that each 5 𝑀𝑎𝑔∕𝐴𝑟𝑐𝑠𝑒𝑐2 decrease in the SQM value reduces
the detectability of the sky brightness by a factor of 100. After
the survey and projection of the study area, we classified the AL

Figure 3. Validation diagram between the actual 2023 and the predicted
2023 AL map.

data into eight categories using the ArcGIS 10.8 classification tool
according to the Bortle scale (Bortle, 2001): Excellent Sky, Typical
Dark sky, Rural Sky, Rural/suburban Transition, Suburban, Bright
Suburban, Suburban/urban Transition, and Urban Center (see
Table 1). This classification aims to prepare the AL data for
modeling and estimating transition potential.

2.5. Analysis of the changes and modeling of the transition
potential
We used the land use change simulation mode (MOLUSCE) in
QGIS, to estimate the spatial and temporal changes. We calculated
the transitions between AL classes during the study periods (2017-
2020 and 2017-2023) and generated change maps. The matrix of
area change and transition probability was created using AL data
and context factors, including the rows and columns of landscape
categories in the start and end years. An artificial neural network
(ANN) multi-layer perceptron approach was used to model the
transition potential.

2.6. Prediction and model validation
In line with numerous studies, the cellular automata-artificial
neural networks (CS-ANN) technique was chosen for modeling
transition potentials and predicting future scenarios (El-Tantawi
et al., 2019). The MOLUSCE plugin is able to efficiently analyze
the changes that occur on the maps over time (Muhammad
et al., 2022). Moreover, it is very effective in terms of assessing
AL changes, estimating transition expectations resulting from
change analysis, and simulating future scenarios. To determine
the reliability of the model used and the prediction results, the
MOLUSCEplugin provided a comparison of the real and predicted
AL images using a kappa validation technique. To compare the
predicted and actual AL for 2023, we calculated the predicted
AL for 2023 using the AL datasets and transition matrices from
2017–2020. In the artificial neural network learning process,
the AL for 2023 was predicted with 100 iterations and 3 × 3
pixel neighborhood value, 0.001 learning rate, 10 hidden layers,
and 0.05 momentum. Figure 3 shows the validation diagram
comparing the actual and predicted artificial light distributions
for 2023. After obtaining satisfactory model validation results, the
AL for 2029 was projected using the AL datasets from 2017 and
2023, and the AL for 2041 was projected using the AL datasets
from 2017 and 2029. The kappa coefficient was calculated using
the following formulas (Ullah et al., 2019);(Alawamy et al., 2020);
(Satya et al., 2020).

𝑘𝑎𝑝𝑝𝑎 = 𝑝0 − 𝑝𝑒
1 − 𝑝𝑒

(2)

4The first class represents Excellent Sky visibility, and the ninth class represents a
sky that has been destroyed by the background brightness caused by artificial light
pollution.
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Table 1. Bortle scale and dark sky brightness values.4

Color Bortle Sky Brightness Sky Class
Magnitude Class 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒∕𝑎𝑟𝑐𝑠𝑒𝑐2
Black 1 >21.9 Excellent Sky
Dark gray 2 21.9-21.5 Typical Dark Sky
Blue 3 21.5-21.3 Rural Sky
Green 4 21.3-20.8 Rural/suburban Transition
Yellow 4,5 20.8-20.1 Suburban
Orange 5 20.1-19.1 Bright Suburban
Red 6,7 19.1-18 Suburban/urban Transition
No color 8,9 <18 Urban center

Where 𝑝0 is the ratio of actual matches, and 𝑝𝑒 is the ratio of
expected matches.

𝑝0 =
𝑐∑

𝑖=1
𝑝𝑖𝑗 (3)

𝑝𝑒 =
𝑐∑

𝑖=1
𝑝𝑖𝑇 ⋅ 𝑝𝑇𝑗 (4)

Here, 𝑝𝑖𝑗 represents the i-th and j-th cells in the contingency table,
𝑝𝑖𝑇 denotes the sum of all cells in the i-th row, 𝑝𝑇𝑗 refers to the
sum of all cells in the j-th column, and c indicates the number
of raster categories. The contingency table is utilized as a matrix
representing the frequency distribution of variables and is assessed
in this study to reveal the relationship between the i-th and j-th
cells. This matrix facilitates the calculation and organization of
the interactions within each cell. The results obtained provide an
explanation of how well each cell aligns with specific criteria.
2.7. Analysis of the annual rate of change
To calculate the annual rate of change for each Bortle class, the
difference between the final and initial years, representing the
magnitude of change over the corresponding years, was divided by
the initial year and time period. Equation (5) was used to analyze
the spatial and temporal magnitude and rate of change in the AL
classes.

𝐴𝑅𝐶(%) =
𝐹𝑦 − 𝑙𝑦
𝑙𝑦 .𝑡

× 100 (5)

ARC is the annual rate of change of AL classes; 𝑙𝑦 and 𝐹𝑦 are
the fields of the initial and final years, respectively; and t is the
time interval.

3. RESULTS AND DISCUSSIONS

3.1. Analysis of the spatio-temporal change
TheALmaps, area statistics, and annual rates of change are shown
in Table 2. During the study period (2017-2023), we observed
an irregular change in AL due to anthropogenic influences (see
Figure 4), especially the Rural/suburban transition showed a
continuous increase from 358,360.68 𝑘𝑚2 to 2,011,280.85 𝑘𝑚2,
Suburban an increase from 10,651.98 𝑘𝑚2 to 27,796.48 𝑘𝑚2,
Bright Suburban an increase from 3,938.05 𝑘𝑚2 to 6,516.86 𝑘𝑚2,
suburban/urban transition an increase from 1,521.77 𝑘𝑚2 to
2,092.19 𝑘𝑚2, Urban Center an increase from 1,240.65 𝑘𝑚2 to
1,372.55 𝑘𝑚2. In contrast, there was a linear decrease from
108,934.61 𝑘𝑚2 to 8.71 𝑘𝑚2 for an Excellent Sky. Similarly, there
was a decrease from 1,315,797.1 𝑘𝑚2 to 2,489.65 𝑘𝑚2 for Typical

Figure 4. AL maps colored by Bortle classes for 2017 and 2020. Black
shades represent Excellent Sky and Typical Dark sky classes with low
human activity, while white represents the Urban Center class with high
human activity.

Dark sky values and from 521,102.75 𝑘𝑚2 to 270,105.78 𝑘𝑚2 for
Rural Sky values. All classes of sky showed similar increases
and decreases between 2017 and 2020 as between 2017 and 2023
(Table 2).
Table 2 presents the spatiotemporal extent across all AL classes

and the annual percentage change between 2017 and 2023. The
AL change analysis aims to show the spatial dynamic changes
in the AL pattern over the analyzed period (see Figure 5). The
analysis results from 2017 to 2023 show a dramatic decline in
the “Excellent Sky” and “Typical Dark Sky” classes. The areas
of these classes shrank, on average, by 16.67% and 16.64% per
year, respectively. The “Rural Sky” class is shrinking at an
average annual rate of approximately 8.03%. In contrast, the
most dramatic increase was observed in the “Rural/Suburban
Transition” class, which is growing at an average annual rate
of 76.87% (see Table 2). In addition, the “Suburban”, “Bright
Suburban”, and “Suburban/urban Transition” classes increased
by 26.83%, 10.91%, and 6.25% per year, respectively. The “Urban
center” class showed a smaller change compared to the other
rising classes, with an annual increase of approximately 1.8%.
The total area of the study border shown in Table 2 is the sum of
the light intensity emanating from the surface (divided into Bortle
classes). The fluctuations in the light intensity filtered as noise
(below 3 𝑛𝑊𝑐𝑚−2𝑠𝑟−1) per year led to negligible differences in
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Table 2. Area sizes (𝑘𝑚2) and annual rate of change (ARC) of AL classes between 2017 and 2023.

Sky Brightness
𝑀𝑎𝑔∕𝐴𝑟𝑐𝑠𝑒𝑐2 2017 2020 2023 ARC % ARC %

𝑘𝑚2 % 𝑘𝑚2 % 𝑘𝑚2 % 2017-2020 2017-2023
>21.9 108934.61 4.69 240.74 0.01 8.71 0.0004 -33.26% -16.67%
21.9-21.5 1315797.10 56.68 62263.58 2.68 2489.65 0.1072 -31.76% -16.64%
21.5-21.3 521102.75 22.45 772380.01 33.27 270105.78 11.6342 16.07% -8.03%
21.3-20.8 358360.68 15.44 1461596.10 62.96 2011280.85 86.6310 102.62% 76.87%
20.8-20.1 10651.99 0.46 17185.96 0.74 27796.48 1.1973 20.45% 26.83%
20.1-19.1 3938.06 0.17 4887.50 0.21 6516.86 0.2807 8.04% 10.91%
19.1-18 1521.77 0.07 1713.67 0.07 2092.19 0.0901 4.20% 6.25%
<18 1240.65 0.05 1228.84 0.05 1372.55 0.0591 -0.32% 1.77%
Total 2,321,548 2,321,496 2,321,663

Figure 5. Colored AL change maps 2017–2020, 2017-2023, 2020-2023.
Colors other than white highlight the transition from one class to another.
The white color represents unchanged classes. 1: Excellent Sky, 2: Typical
Dark Sky, 3: Rural Sky, 4: Rural/suburban Transition, 5: Suburban, 6:
Bright Suburban, 7: Suburban/urban Transition, 8: Urban Center classes.

the total area, as shown in Table 2. The changes in the AL classes
between 2017-2020 and 2020-2023 are shown in Table 3. Table 3
shows the areas gained and lost for each brightness class in the
time intervals used in this study.
3.2. AL transition analysis
The transition matrix is an important part of the analysis of
temporal changes between AL classes. The matrix represents

the pixel ratios that change from one Bortle class to another. The
columns of the transition matrix table represent the Bortle classes
in the initial year, whereas the rows show the Bortle classes in
the final year in the same order. The entries outside the diagonal
represent the transition dimension from one class to another,
whereas the diagonal entries represent the stability dimension
of the respective class. The closer the values of the diagonal
entries are to 1, the higher the stability of the Bortle class is.
Transition matrices are used to analyze the transitions between
different classes (Xiao et al., 2022). In our study area, the transition
potentialmatrices for the time intervals 2017-2020, 2020-2023, and
2017-2023 were calculated using QGIS/MOLUSCE based on the
available AL data. These matrices were used to create transition
maps of the classes (see Figure 5). The transition potential matrix
for the period 2017-2020 is shown in Table 4. Rural/suburban
transition and Urban Center are the most stable brightness classes
with probabilities of 0.903 and 0.88, respectively, and contribute to
the Rural Sky with transition values of 0.07 and 0.003, respectively.
The least stable brightness classes are the Excellent Sky and
Typical Dark sky classes with values of 0.000087 and 0.047442,
respectively. The transition potential matrix for the year 2020-
2023 is shown in Table 5. The most stable brightness classes are
Urban Centers and Rural/suburban areas, with probabilities of
0.91 and 0.9, respectively. The least stable brightness classes are
Typical Dark Sky and Excellent Sky, with values of 0.001 and 0.002,
respectively, as in 2017-2020.
Additionally, the AL dataset for the period 2017-2023 is used

alongwith the transition probabilitymatrix for the 2029 projection.
According to the transitionmatrix for the period between 2017 and
2023 (Table 6), the Rural/suburban transition class was found to
be stablewith a value of 0.94, while the Excellent Sky, Typical Dark
Sky, Rural Sky, and Bright Suburban classes exhibited instability
values of 0.000004, 0.0006, 0.057, and 0.62, respectively. The Rural
Suburban transition class will experience more stable phenomena
between 2017 and 2029 than the other classes (Table 7).

3.3. Modeling the transition potential and model validation

The MOLUSCE plugin can use transition potential modeling,
such as multi-criteria evaluation, ANN (multi-layer perceptron),
evidence weights, CA algorithm, and logistic regression, to
generate future simulations (Chisanga et al., 2024); (Vaddiraju
et al., 2023). In this study, the CA-ANN approach was used
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Table 3. Temporal changes 2017–2023

Sky Brightness
𝑀𝑎𝑔∕𝐴𝑟𝑐𝑠𝑒𝑐2 2017–2020 2020–2023

𝑘𝑚2 % 𝑘𝑚2 %
>21.9 -108693.9 -4.68 -232.04 -0.01
21.9-21.5 -1253533.5 -54.00 -59773.94 -2.57
21.5-21.3 251277.3 10.82 -502274.23 -21.64
21.3-20.8 1103235.4 47.52 549684.75 23.67
20.8-20.1 6534.0 0.28 10610.52 0.46
20.1-19.1 949.4 0.04 1629.36 0.07
19.1-18 191.9 0.01 378.52 0.02
<18 -11.8 0.00 143.72 0.01

Table 4. Transition matrix from 2017–2020

Year 2020

2017
Sky Brightness
𝑀𝑎𝑔∕𝐴𝑟𝑐𝑠𝑒𝑐2 >21.9 21.9-21.5 21.5-21.3 21.3-20.8 20.8-20.1 20.1-19.1 19.1-18 <18

>21.9 0.000087 0.050435 0.427833 0.520099 0.001053 0.000379 0.000094 0.000020
21.9-21.5 0.000069 0.047442 0.469636 0.480940 0.001445 0.000374 0.000080 0.000013
21.5-21.3 0.000161 0.010035 0.165911 0.821502 0.001947 0.000362 0.000071 0.000011
21.3-20.8 0.000157 0.004734 0.071623 0.903020 0.019036 0.001131 0.000265 0.000035
20.8-20.1 0.000040 0.003601 0.035088 0.177796 0.689194 0.091463 0.002575 0.000241
20.1-19.1 0.000000 0.002912 0.030326 0.093946 0.140369 0.666081 0.065707 0.000659
19.1-18 0.000000 0.002733 0.021004 0.036973 0.011797 0.161703 0.705654 0.060135
<18 0.000000 0.000528 0.003343 0.006687 0.001760 0.000880 0.101707 0.885096

Table 5. Transition matrix from 2020–2023

Year 2023

2020
Sky Brightness
𝑀𝑎𝑔∕𝐴𝑟𝑐𝑠𝑒𝑐2 >21.9 21.9-21.5 21.5-21.3 21.3-20.8 20.8-20.1 20.1-19.1 19.1-18 <18

>21.9 0.00278 0.02317 0.123262 0.848007 0.00278 0.00000 0.00000 0.00000
21.9-21.5 0.000024 0.001022 0.152431 0.839886 0.005047 0.001199 0.000305 0.000085
21.5-21.3 0.000002 0.000775 0.160584 0.831997 0.005177 0.001119 0.000279 0.000067
21.3-20.8 0.000003 0.001208 0.089655 0.900447 0.007925 0.000605 0.000136 0.000021
20.8-20.1 0.000012 0.000062 0.009381 0.263837 0.652619 0.07231 0.001531 0.000247
20.1-19.1 0.00000 0.000044 0.006883 0.178526 0.098864 0.649174 0.065062 0.001447
19.1-18 0.00000 0.00000 0.002909 0.113964 0.020238 0.079433 0.702884 0.080572
<18 0.00000 0.00000 0.002837 0.025887 0.001596 0.00000 0.059043 0.910638

to forecast the future and model the transition potential. To
predict the thematic AL layer for 2023, the AL shift maps for
2017-2020 were used, and a kappa value of 0.83 was obtained.
After generating the predicted 2023 thematic AL layer for the
study area, it was compared with the actual 2023 thematic AL
layer (see Figure 3). The comparison yielded an overall accuracy
of 62.77% and an overall kappa value of 0.42. Figure 6 and Table 8
present the predicted and actual AL maps and their associated
statistics for 2023.

3.4. Estimation of AL
After obtaining satisfactory results from model validation, we
estimated the AL for 2029 and 2041. Using the AL dataset for
2017 and 2023 and the transition probability matrix ( Table 6),
the AL for 2029 was estimated, and a kappa value of 0.72 was
obtained. In addition, the AL dataset for 2017 and 2029, including
the transition matrix ( Table 7), was used to predict the year 2041,

5Accuracy:62.77, Kappa ANN: 0.83, Value Validation: 0.42
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Table 6. Transition matrix from 2017-2023

Year 2023

2017
Sky Brightness
𝑀𝑎𝑔∕𝐴𝑟𝑐𝑠𝑒𝑐2 >21.9 21.9-21.5 21.5-21.3 21.3-20.8 20.8-20.1 20.1-19.1 19.1-18 <18

>21.9 0.000004 0.000876 0.131226 0.866268 0.001270 0.000249 0.000089 0.000018
21.9-21.5 0.000003 0.000663 0.160876 0.834544 0.003107 0.000610 0.000156 0.000041
21.5-21.3 0.000003 0.000610 0.057507 0.937517 0.003858 0.000414 0.000081 0.000009
21.3-20.8 0.000001 0.000205 0.017923 0.949225 0.031425 0.001054 0.000145 0.000022
20.8-20.1 0.000000 0.000020 0.005533 0.189667 0.653059 0.147999 0.003561 0.000161
20.1-19.1 0.000000 0.000000 0.006098 0.120262 0.142787 0.626140 0.101857 0.002857
19.1-18 0.000000 0.000000 0.007913 0.050065 0.036542 0.130341 0.668968 0.106172
<18 0.000000 0.000000 0.000528 0.008974 0.003695 0.000704 0.107338 0.878761

Table 7. Transition matrix from 2017-2029

Year 2029

2017
Sky Brightness
𝑀𝑎𝑔∕𝐴𝑟𝑐𝑠𝑒𝑐2 >21.9 21.9-21.5 21.5-21.3 21.3-20.8 20.8-20.1 20.1-19.1 19.1-18 <18

>21.9 0.000009 0.002622 0.202718 0.789502 0.004044 0.000795 0.000255 0.000056
21.9-21.5 0.000004 0.001223 0.161069 0.831052 0.005308 0.001031 0.000253 0.000059
21.5-21.3 0.000004 0.000798 0.052535 0.942150 0.003958 0.000453 0.000092 0.000010
21.3-20.8 0.000001 0.000316 0.016344 0.951555 0.030524 0.001088 0.000151 0.000022
20.8-20.1 0.000000 0.000020 0.005110 0.190451 0.649538 0.151178 0.003561 0.000141
20.1-19.1 0.000000 0.000000 0.005824 0.120097 0.121470 0.646358 0.103395 0.002857
19.1-18 0.000000 0.000000 0.007049 0.050784 0.013667 0.143576 0.678464 0.106460
<18 0.000000 0.000000 0.000352 0.009150 0.002815 0.001056 0.107690 0.878937

Figure 6. Actual and predicted ALmaps colored by Bortle classes for 2023.
Black shades represent excellent skies and Typical Dark sky classes with
low human activity, while the color white represents the Urban Center
class with high human activity.

and a kappa value of 0.91 was obtained. The projected AL map,
field statistics, and kappa values for the general validity for 2029
and 2041 are shown in Figure 7 and Table 9.

6Kappa(2029): 0.72, Kappa(2041): 0.91

Table 8. Actual and predicted classified AL statistics for 2023 5

Sky Brightness Actual Predicted
𝑀𝑎𝑔∕𝐴𝑟𝑐𝑠𝑒𝑐2 𝑘𝑚2 % 𝑘𝑚2 %
>21.9 8.71 0.0004 173.12 0.007
21.9-21.5 2489.65 0.1072 55734.768 2.401
21.5-21.3 270105.78 11.6350 766027.43 32.997
21.3-20.8 2011280.85 86.6373 1473528.2 63.473
20.8-20.1 27796.48 1.1974 19148.735 0.825
20.1-19.1 6516.86 0.2807 4162.4819 0.179
19.1-18 2092.19 0.0901 1544.3935 0.067
<18 1372.55 0.0591 1177.331 0.051

3.5. Change between 2017 and 2041

The AL change analysis aims to show the spatial dynamic changes
in the AL pattern during the study period. According to the
results obtained for the period from 2017 to 2041, the Excellent
Sky class experienced a loss of 108,929 𝑘𝑚2. While it accounted
for approximately 5% of the total surface area in 2017, it nearly
disappeared by 2041. The Typical Dark sky class experienced
the most dramatic loss, with an area loss of 1,314,649 𝑘𝑚2 This
represents a loss of approximately 56% between the years studied.
The Rural Sky class lost 284,679 𝑘𝑚2 of area, which corresponds to
approximately 12% of the total area. The rural-suburban transition
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Figure 7. Projected AL maps for 2029 and 2041, colored by Bortle classes.
Black shades represent the Excellent Sky and Typical Dark sky classes
with low human activity, while white represents the Urban Center class
with high human activity.

Table 9. Projected AL classes for the 2029 and 2041 field statistics6

Sky Brightness 2029 2041
𝑀𝑎𝑔∕𝐴𝑟𝑐𝑠𝑒𝑐2 𝑘𝑚2 % 𝑘𝑚2 %
>21.9 3.84 0.00 5.99 0.00
21.9-21.5 908.09 0.04 1147.88 0.05
21.5-21.3 361314.31 15.56 236423.52 10.18
21.3-20.8 1925811.85 82.95 2051122.53 88.35
20.8-20.1 27387.13 1.18 24190.64 1.04
20.1-19.1 3622.44 0.16 5505.09 0.24
19.1-18 1639.88 0.07 1884.97 0.08
<18 918.80 0.04 1325.71 0.06

Table 10. Estimated temporal changes between 2023 and 2041

Sky Brightness
𝑀𝑎𝑔∕𝐴𝑟𝑐𝑠𝑒𝑐2

2023–2029 2029–2041
𝑘𝑚2 % 𝑘𝑚2 %

>21.9 -4.87 0.00 2.15 0.00
21.9-21.5 -1581.56 -0.07 239.79 0.01
21.5-21.3 91208.53 3.93 -124890.8 -5.38
21.3-20.8 -85469 -3.68 125310.7 5.40
20.8-20.1 -409.35 -0.02 -3196.49 -0.14
20.1-19.1 -2894.42 -0.12 1882.65 0.08
19.1-18 -452.31 -0.02 245.09 0.01
<18 -453.75 -0.02 406.91 0.02

class showed the most dramatic increase. A 73% growth was
achieved across the entire area, with an increase in the area of
1,692,762 𝑘𝑚2. The suburban class increased by 13,538 𝑘𝑚2,
which corresponds to approximately 0.6% of the total area. The
classes “Bright Suburban area”, “suburban/urban transition” and
“UrbanCenter” do not show significant increases, and increases of
0.07%, 0.01%, and 0.004% of the total area were found, respectively.
The spatial changes owing to class transitions during the analyzed
periods are shown in Figure 8.

Figure 8. Colored maps of estimated AL changes 2023–2029, 2029-2041,
2023-2041. Colors other than white highlight the transition from one
class to another. White colors represent unchanged classes. 1: Excellent
Sky, 2: Typical Dark Sky, 3: Rural Sky, 4: Rural/suburban transition, 5:
Suburban, 6: Bright Suburban, 7: Suburban/urban Transition, 8: Urban
Center classes are shown.

4. Discussion

In this study, the temporal and spatial dynamic changes in
artificial light patterns between 2017 and 2041 were analyzed
using remote sensing data and GIS within an area encompassing
the Brazilian states of Roraima, Amazonas, Acre, and Rondônia,
based on the Bortle classification. The results of the analysis
show that the impact of light pollution in the region has increased
dramatically over the years, leading to significant losses in the dark
sky classes. The observed trends suggest that the natural classes,
particularly “Excellent Sky” and “Typical Dark Sky”, are likely to
face near-complete depletion in the future, with predicted losses
reaching approximately 100% and 56%, respectively, if current
environmental pressures persist. Similarly, the Rural Sky class
is anticipated to experience significant reductions, potentially
losing even more land beyond the already displaced 284,679
𝑘𝑚2, underscoring the urgency for sustainable intervention. The
“Rural-suburban transition” class is expected to experience the
largest increase, with projections suggesting a 73% rise. This
trend will likely signify a gradual transformation of rural areas
into semi-urban zones, leading to the continued spread of light
pollution in rural regions. A relatively smaller increase was
observed in the Suburban, Bright Suburban, Suburban/Urban
Transition, and Urban Center classes. The fact that the change
in the Urban Center class was only 0.004% shows that these
classes already have a high level of light pollution and that the
growth is concentrated in rural areas with low light pollution.
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This result can be linked to the fact that the study area consists
of forested areas that are not suitable for urbanization. These
results show that the rapid increase in artificial light, especially in
large and relatively sparsely populated regions such as Roraima,
Amazonas, Acre, and Rondônia, poses a serious threat to the
protection of natural areas. Apart from the negative effects of
this rapid increase in light pollution on astronomical studies, the
ecological consequences should also be discussed by experts in
this field. In this context, the spatial analysis results emphasize
the urgency of implementing measures to manage and protect
against light pollution. In these regions of Brazil, sustainable
lighting technologies and strategies for protecting natural areas
are necessary. Curbing the increasing trends, especially in
rural areas, will contribute to the protection of dark skies and
environmental sustainability. This study, conducted using the
VIIRS/DNB dataset and the Bortle classification, provides an
important scientific basis for understanding the spatial changes
caused by artificial light pollution and how to tackle this problem.
Such analyses can be used more effectively for light pollution
management and policy-making processes.

5. Conclusions and recommendations

The VIIRS/DNB NTL data were categorized according to the
Bortle classification, and projections of light pollution for 2029
and 2041 were generated using the QGIS/MOLUSCE plugin
for the study area, which includes the Brazilian states of
Roraima, Amazonas, Acre, and Rondônia. The integration of
VIIRS/DNB data with the Bortle classification and its analysis
using QGIS/MOLUSCE can significantly increase the sensitivity
of spatial analyses. This study provides valuable insights that can
form the basis for developing future light pollution management
strategies. It has been shown that specific strategies need to be
developed for the protection of classes such as “Excellent Sky”
and “Typical Dark Sky”. In this context, the protection of nature
reserves, the creation of light pollution management plans, and
the reinforcement of environmental awareness campaigns can
be proposed. Furthermore, it was found that this comprehensive
method, applied for the first time in this study, increased the
sensitivity of spatial analysis and strengthened the reliability of
future projections. The inclusion of variables such as GDP and
population, which affect light pollution, can further increase
the accuracy and effectiveness of the analyses. Such inclusion
will contribute to the development of more comprehensive and
realistic measures to combat the effects of light pollution.

6. CONCLUSION

• This study is the first to present a project-based modeling
of light pollution and future projections of light pollution
using QGIS/MOLUSCE by combining VIIRS/DNB data with
Bortle classification.

• Light pollution is increasing rapidly in theAmazon rainforest
region. The future of dark-sky classes is under threat. The
Excellent Sky class is expected to almost disappear, and the
Typical Dark sky class will also decline rapidly.

• The “Excellent Sky” class lost 108,929 𝑘𝑚2 of land in the
period 2017–2041. While it accounted for 5% of the total area
in 2017, it is expected to almost disappear by 2041.

• The “Typical Dark Sky” class is expected to be the class
with the largest decline, losing 1,314,649 𝑘𝑚2 of area. This
corresponds to approximately 56 % of the total area. A
significant decline is also predicted for the “ Rural Sky” class:

284,679 𝑘𝑚2 will be lost, which corresponds to a decline of
approximately 12 %.

• The “Rural-suburban transition” class recorded the largest
increase with an area of 1,692,762 𝑘𝑚2 , which corresponds
to an overall growth of 73 %. This indicates that rural areas
are transforming into semi-urban areas.
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