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Abstract

This paper presents applications of the Theory of Functional Connections (TFC) for solving problems in celestial mechanics, with a focus on
temporary gravitational capture. The univariate TFC framework is employed to solve second-order differential equations. The mathematical
formulation for the solution of the two-body problem and the circular restricted three-body problem (CR3BP) through TFC is presented and
some differences between the circular and elliptic problems are discussed. The application of TFC to solve the temporary gravitational
capture based on the CR3BP, considering backward integration, is presented under different formulations, including inertial and rotating
frames, as well as initial and boundary value problems. Error comparisons among these cases are provided and the best strategies for
solving the capture problem, depending on the need, are discussed.

Resumen

Este artículo presenta aplicaciones de la Teoría de Conexiones Funcionales (Theory of Functional Connections, TFC) para la resolución
de problemas en mecánica celeste, con especial énfasis en la captura gravitacional temporal. El marco univariado de la TFC se emplea
para resolver ecuaciones diferenciales de segundo orden. Se presenta la formulación matemática para la solución del problema de
dos cuerpos y del problema restringido de tres cuerpos circular (CR3BP, por sus siglas en inglés) mediante TFC, y se discuten algunas
diferencias entre los casos circular y elíptico. Asimismo, se aplica la TFC al estudio de la captura gravitacional temporal basada en el
CR3BP, considerando integración hacia atrás, bajo distintas formulaciones que incluyen marcos de referencia inercial y rotante, así como
problemas de valores iniciales y de contorno. Se presentan comparaciones de error entre estos casos y se discuten las estrategias más
adecuadas para resolver el problema de captura según los requerimientos de cada aplicación.
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1. Introduction

Orbital propagation is fundamental to the study of problems in
celestial mechanics. Several methods can be used, depending
on the system in question, from the two-body problem
(2BP), the circular (or elliptical) restricted three-body problem
(CR3BP/ER3BP), to a generalization of the n-body problem.
Classically, these problems are solved via numerical integration,
with increasingly sophisticated integrators.
One of these problems in celestial mechanics is the temporary

gravitational capture in a system composed of three bodies, in
which a body 𝐵3 of mass𝑚3 is captured by a body 𝐵1 of mass𝑚1
and has its motion disturbed by a body 𝐵2 of mass 𝑚2. When
𝑚2 > 𝑚1, with the mass 𝑚3 being negligible in relation to the
others and the eccentricity of the orbit of body 𝐵1 around 𝐵2 being
sufficiently small, this problem can be solved by CR3BP.
The term gravitational capture refers to the process in which

a spacecraft transitions from a hyperbolic trajectory (unbound
orbit) to an elliptical trajectory (bound orbit) around a celestial
body owing to the gravitational influence of other celestial bodies.
Several studies have been conducted on this topic, particularly

related to missions to the Moon, which was the first motivation
for these studies (Belbruno & Miller, 1993; Belbruno, 1987;
Circi & Teofilatto, 2001; Yamakawa et al., 1993, 1992; Dahlke,
1998, Investigation of lunar ballistic capture transfer trajectories;
Yamakawa & Yawaguchi, 1993).

The general idea is to send a spacecraft on a longer trajectory
such that when approaching the desired celestial body, it suffers
a small but constant force from the gravity field of one or more
celestial bodies, and when it reaches the final celestial body, it has
a negative two-body energy with respect to this body (Belbruno
et al., 2008; Belbruno, 2004; Belbruno et al., 2010; García &Gómez,
2007).

There is no need to use fuel for that part of the maneuver.
However, this capture is never permanent, and after some time,
the spacecraft will escape again from the celestial body. The use
of this technique is usually combined with fuel based maneuvers
that complete the capture during the time that the two body energy
is negative, so there is a saving in the fuel consumption. After the
first studies on lunarmissions, other applications were considered
(Li & Sun, 2015; Topputo & Belbruno, 2009, 2015).
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This maneuver typically results in much longer transfer times,
which is a penalty for the gains in fuel consumption. Some
studies have examined this point (Machuy et al., 2007; Neto &
de Almeida Prado, 1998).
In general, gravitational capture is modeled based on the three-

body problem, either in its circular or elliptical form, and solved
through numerical integration. Given the initial conditions at
the end of the capture, numerical integration backward in time
is performed to calculate the trajectory around the primary until
the third body crosses the sphere of influence of this primary (a
condition that characterizes the capture). The solution obtained
using this method requires sophisticated numerical integrators
that allow for accurate numerical integration.
The purpose of this paper is to provide a unified framework to

obtain analytically approximated solutions of non-homogeneous
linear differential equations that represent the dynamics of the
CR3BP, without other perturbations, subject to a set of two
constraints, using the Theory of Functional Connections (TFC).
This method can be found in the original paper byMortari (2017a)
and is presented in detail in §2. The first papers on TFC were
published in 2017 (Mortari, 2017b; Johnston et al., 2020).
A least-squares solution is provided to ensure a high-accuracy

solution.

2. TFC Method for Solving Second-Order Differential
Equations

This section presents the TFC method applied to the solution
of Second-Order Differential Equations (SODE) using the least-
squares method.
Given a linear or nonlinear SODE, with constant or variable

coefficients, homogeneous or non-homogeneous, as described by
Eq. 1, a linear transformation can be applied to the independent
variable of this equation (in this case the time t) so that the new
independent variable is defined over the interval of [-1 1]. A new
independent variable, denoted by 𝜆, is introduced through the
linear transformation given by Eq. 2.

𝐟2(𝑡)𝐲̈(𝑡) + 𝐟1(𝑡)𝐲̇(𝑡) + 𝐟0(𝑡)𝐲(𝑡) = 𝐟 (𝑡), (1)

𝜆 =
𝜆𝑓 − 𝜆0
𝑡𝑓 − 𝑡0

(𝑡 − 𝑡0) + 𝜆0. (2)

In Eq. 1 the terms 𝐟2(𝑡), 𝐟1(𝑡) and 𝐟0(𝑡) are coefficients of
the SODE. The function y(t) represents the dependent variable,
whereas 𝑡 is the independent variable, corresponding to time in
the context of gravitational capture studies. The term 𝐟 (𝑡) denotes
the forcing term.
InEq. 2, 𝜆𝑓 and 𝜆0 represent the bounds of the time interval over

which the SODE is analyzed, and 𝑡 is an arbitrary time within the
domain of the original independent variable 𝑡. Similarly, 𝑡𝑓 and 𝑡0
denote the bounds of the new independent variable 𝜆, namely -1
and 1, respectively, when orthogonal polynomials are considered,
where 𝜆 is an arbitrary time variable within the scope of this
transformed independent variable.
Consequently, the original differential equation is transformed

as follows: 3, where c is defined by Eq. 4:

𝑐2𝐟2(𝜆)𝐲′′(𝜆) + 𝑐𝐟1(𝜆)𝐲′(𝜆) + 𝐟0(𝜆)𝐲(𝜆) = 𝐟 (𝜆), (3)

𝑐 =
𝜆𝑓 − 𝜆0
𝑡𝑓 − 𝑡0

. (4)

The first and second derivatives of y(𝜆) with respect to 𝜆 are
defined in Eqs. 5 and 6, respectively:

𝑑
𝑑𝜆

𝐲(𝜆) = 𝐲′(𝜆), (5)

𝑑2
𝑑𝜆2

𝐲(𝜆) = 𝐲′′(𝜆). (6)

Eq. 3 can be solved using a constrained expression (Mortari,
2017a) given by Eq. 9, considering the initial conditions, as
specified in Eqs. 7 and 8:

𝑦(𝑡 = 0) = 𝑦(𝜆 = −1) = 𝑦0, (7)

𝑦̇(𝑡 = 0) = 𝑦̇0 = 𝑐𝑦′(𝜆 = −1) = 𝑦′0, (8)

𝐲(𝜆) = 𝐠(𝜆) + 𝜈1𝐩(𝜆) + 𝜈2𝐪(𝜆), (9)

where 𝑦0 is the initial position, 𝑦′0 is the initial velocity, 𝐩(𝜆) and
𝐪(𝜆) are assigned functions, 𝐠(𝜆) is an unknown free function,
and 𝜈1 and 𝜈2 are unknown coefficients to be determined.
The first derivative of Eq. 9 is expressed by Eq. 10:

𝐲′(𝜆) = 𝐠′(𝜆) + 𝜈1𝐩′(𝜆) + 𝜈2𝐪′(𝜆), (10)

where 𝐲′(𝜆), 𝐠′(𝜆), 𝐩′(𝜆) and 𝐪′(𝜆) denote the respective first
derivatives of 𝐲(𝜆), 𝐠(𝜆), 𝐩(𝜆) and 𝐪(𝜆) with respect to 𝜆.
Therefore, it is possible to write the system in the form of Eq.

11. It can be solved for 𝜈1 and 𝜈2 according to Eq. 12, based on the
initial conditions:

[
𝐲(𝜆)
𝐲′(𝜆)

] = [
𝐩(𝜆) 𝐪(𝜆)
𝐩′(𝜆) 𝐪′(𝜆)

] [
𝜈1
𝜈2
] = [

𝐠(𝜆)
𝐠′(𝜆)

] , (11)

[
𝜈1
𝜈2
] = [

𝑝0 𝑞0
𝑝′0 𝑞′0

]
−1

[
𝑦0 − 𝑔0
𝑦′0 − 𝑔′0

] = [
𝑌0

𝑌′
0
] − [

ℎ11 ℎ12
ℎ21 ℎ22

] [
𝑔0
𝑔′0
] . (12)

In Eq. 12 𝑝0, 𝑞0, 𝑝′0, 𝑞′0, 𝑦0, 𝑦′0, 𝑔0 and 𝑔′0 correspond to the
respective functions 𝐩(𝜆), 𝐪(𝜆), 𝐩′(𝜆), 𝐪′(𝜆), 𝐲(𝜆), 𝐲′(𝜆), 𝐠(𝜆),
𝐠′(𝜆) evaluated at the initial time.
By substituting 𝜈1 and 𝜈2 in the constrained expression 9, Eq. 13

is obtained:

𝐲(𝜆)=𝐠(𝜆)+
[
𝑌0−(ℎ11𝑔0+ℎ12𝑔′0)

]
𝐩(𝜆)+

[
𝑌′
0−(ℎ21𝑔0+ℎ22𝑔

′
0)
]
𝐪(𝜆),
(13)

where 𝑌0, 𝑌′
0, ℎ11, ℎ12, ℎ21 and ℎ22 are given by the result of Eq. 12.

Eq. 13 can be further simplified as shown in Eq. 14, where 𝝋1
and 𝝋2 are given by Eqs. 15 and 16, respectively:

𝐲(𝜆) = 𝐠(𝜆) − 𝝋1𝑔0 − 𝝋2𝑔
′
0 + 𝑌0𝐩(𝜆) + 𝑌′

0𝐪(𝜆), (14)

𝝋1 = ℎ11𝐩(𝜆) + ℎ21𝐪(𝜆), (15)

𝝋2 = ℎ12𝐩(𝜆) + ℎ22𝐪(𝜆). (16)

By differentiating Eq. 14 and substituting in Eq. 3, the
differential equation assumes the form of Eq. 17, where 𝝌 1(𝜆) and
𝝌 2(𝜆) are given by Eqs. 18 and 19 and 𝝊(𝜆) is given by Eq. 20:

𝑐2𝐟2(𝜆)𝐠′′(𝜆)+𝑐𝐟1(𝜆)𝐠′(𝜆)+𝐟0(𝜆)𝐠(𝜆)−𝝌 1(𝜆)𝑔0−𝝌 2(𝜆)𝑔
′
0 = 𝝊(𝜆),

(17)
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𝝌 1(𝜆) = 𝑐2𝐟2(𝜆)𝝋′′1 (𝜆) + 𝑐𝐟1(𝜆)𝝋′1(𝜆) + 𝐟0(𝜆)𝝋1(𝜆), (18)

𝝌 2(𝜆) = 𝑐2𝐟2(𝜆)𝝋′′2 (𝜆) + 𝑐𝐟1(𝜆)𝝋′2(𝜆) + 𝐟0(𝜆)𝝋2(𝜆), (19)

𝝊(𝜆) = 𝐟 (𝜆) − 𝑐2𝐟2(𝜆)
[
𝑌0𝑝′′(𝜆) + 𝑌′

0𝑞
′′(𝜆)

]

−𝑐𝐟1(𝜆)
[
𝑌0𝑝′(𝜆) + 𝑌′

0𝑞
′(𝜆)

]
− 𝐟0(𝜆)

[
𝑌0𝑝(𝜆) + 𝑌′

0𝑞(𝜆)
]
𝐲(𝜆).
(20)

The free function 𝐠(𝜆) can be expressed as a linear combination
ofm basis functions 𝐡(𝜆), enabling the system defined by Eq. 17
to be reformulated in matrix form as shown in Eq. 22. These
basis functions can conveniently be Legendre or Chebyshev
polynomials (Mortari, 2017a). This is a common consideration in
TFC-related literature:

𝐠(𝜆) = 𝝈𝑇𝐡(𝜆), (21)

Υ𝝈𝑇 = 𝝊(𝜆). (22)

In Eqs. 21 and 22, 𝜎 is a vector of coefficients to be calculated
in order to approximate the solution of the SODE for each of the
N equations, corresponding to the N evaluated points.
Each element of the matrix Υ is given by Eq. 23 and each

element of the vector 𝜐 is given by Eq. 20 for 𝜆 = 𝜆𝑖 . Note that the
matrix Υ in Eq. 22, is a matrix𝑚 ×𝑁, where𝑚 is the number of
terms of the polynomial series used in the calculation and 𝑁 is
the number of time instants evaluated (segmentation of 𝜆). The
values at each of these instants (𝜆𝑖) can be obtained from Eq. 24:

Υ𝑖𝑗=𝑐2𝐟2(𝜆)𝐡′′(𝜆) + 𝑐𝐟1(𝜆)𝐡′(𝜆) + 𝐟0(𝜆)𝐡(𝜆) − 𝝌 1(𝜆)𝑔0 − 𝝌 2(𝜆)𝑔
′
0,

(23)

𝜆𝑖 = −cos 𝑖𝜋𝑁 . (24)

The𝑁 values calculated using Eq. 24 are the optimal values for
𝜆 (Lanczos, 1957; Wright, 1964; Johnston et al., 2020).
Eq. 23 presents the 𝑖𝑗-th element of the matrix Υ, where (1 <

𝑖 < 𝑁) and (1 < 𝑗 < 𝑚). Indeed, this matrix arises from the
fact that the functions 𝐡 are polynomials. Therefore, the term
ℎ𝑖𝑗 is associated with the instant (𝜆𝑖) and corresponds to the 𝑖𝑗-
th term of the polynomial series. It is important to note that
the basis functions must be linearly independent of the support
functions 𝐩(𝜆) and 𝐪(𝜆) (Mortari, 2017a; Mortari et al., 2019).
Consequently, because the first two terms of the polynomial series
have already been used for the support functions, these terms
cannot be considered in the computation of the functions 𝐡(𝜆)
and their derivatives.
Therefore, at this point, it is possible to obtain a solution to

Eq. 3: by solving the system given by Eq. 22, the vector 𝝈 is
obtained and the free function 𝑔(𝜆) can be calculated through Eq.
21. Consequently, Eq. 14, which represents the solution to the
SODE, is fully defined.
This initial solution, obtained through the calculation of 𝝈,

which we may refer to as 𝝈0, cannot achieve the desired accuracy
specified by the user. The loss function (Eq. 25) is also known as
the residual vector of the differential equation. The error in the
least-squares method corresponds to the norm of this residual, as
given by Eq. 26:

ℒ𝑘(𝜆) = Υ𝝈 − 𝝊(𝜆), (25)

𝜀 = |ℒ𝑘(𝜆)|. (26)

Machine-level accuracy can be achieved by solving the problem
using the TFC method with the least squares method (Mortari
et al., 2019; Johnston et al., 2020). However, in cases where
the desired level is not achieved in the first step, that is, with
the calculation of 𝝈0, it is possible to reduce the errors through
a linearization of the differential equation around the initial
solution (𝝈0), as given in Eq. 27, where

𝜕ℒ

𝜕𝝈
is given by Eq. 28.

Nevertheless, this refinement is limited by factors such as the
number of polynomials considered in the calculation (𝑚) and the
number of time instants evaluated (𝑁).

ℒ𝑘 + (𝜕ℒ
𝜕𝝈

)
𝑇

𝑘
(𝝈𝑘+1 − 𝝈𝑘) = 0, (27)

𝜕ℒ
𝜕𝝈

=
𝑛∑

𝑖=0
( 𝜕ℒ
𝜕𝐲(𝑖)

𝜕𝐲(𝑖)

𝜕𝝈 ) . (28)

In Eqs. 27 and 28 the term 𝜕ℒ

𝜕𝝈
is the Jacobian,𝝈𝑘+1 is the current

value of 𝝈, 𝝈𝑘+1 is the value of 𝝈 calculated from 𝑘𝑡ℎ iteration.
Therefore, the linearization process is essential for refining the

solution iteratively. This approach allows controlled convergence
of the method by updating the coefficients 𝝈 while recognizing
that the achievable precision is inherently limited by the chosen
polynomial basis size and discretization resolution.
Thus, the combination of the constrained expression

formulation provided by the TFC method with the linearization
technique, provides a systematic framework for solving SODE
under various conditions, ensuring accuracy in practical
applications, and can be directly applied to the computation of
temporary gravitational capture problems.

3. TWO-BODY PROBLEM SOLVING VIA THEORY OF
FUNCTIONAL CONNECTIONS

The temporary gravitational capture problem involves
determining the motion of a body orbiting a primary body
and subject to disturbance by other bodies. When only one
disturbing body is considered, the problem can be modeled using
the three-body problem. However, the motion of the primary
and secondary bodies (bodies 𝐵1 and 𝐵2) occur around their
barycenter and can be determined from the two-body problem
(2BP). The motion is analyzed in this section.
The two-body problem is quite simple, well documented in the

literature, and has an analytical solution. Since 2BP can be solved
analytically, TFC is not necessary to solve it. However, some
interesting preliminary conclusions regarding TFC applications
can be obtained by solving the 2BP via TFC. A representative
application of the TFC in the context of celestial mechanics can
be found in de Almeida Junior et al. (2021).
The motion of body 𝐵2 around body 𝐵1 can be represented by

the differential equation (Eq. 29):

𝐫̈ = −
𝜇1
|𝑟|3

𝐫, (29)

where 𝜇1 is the gravitational constant of body 𝐵1, r is the
vector radius between bodies 𝐵1 and 𝐵2 and 𝐫̈ is the respective
acceleration.
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The solution to this equation is given by Eq. 30:

𝐫 =
𝑎
(
1 − 𝑒2

)

1 + 𝑒 cos 𝑓
, (30)

where 𝑎 is the semi-major axis, 𝑒 is the eccentricity and 𝑓 is the
true anomaly. Then, using Kepler’s equation (Eq. 31):

𝑀 = 𝑛𝑡 = 𝑢 − 𝑒 sin 𝑢, (31)

where𝑀 is the mean anomaly, 𝑢 is the eccentric anomaly, 𝑛 is
the mean motion and 𝑡 is the time.
The conversion between the eccentric anomaly and the true

anomaly is given by Eq. 32:

tan2
𝑓
2 = 1 + 𝑒

1 − 𝑒 tan
2 𝑢
2 . (32)

It is possible to solve this problem through TFC, initially
identifying the SODE coefficients (according to Eq. 1) as being
f2(𝑡) = 1, f1(𝑡) = 0, f0(𝑡) = 𝜇r∕|r|3 and f(𝑡) = 0. Here, as in
the introduction, we present the initial value problem, in which,
given the initial position (Eq. 33) and the initial velocity (Eq. 34),
we seek to calculate the positions and velocities for a later time.

𝐫(𝑡 = 0) = 𝐫(𝜆 = −1) = 𝑟0 (33)

𝐫̇(𝑡 = 0) = 𝐫̇0 = 𝑐𝐫′(𝜆 = −1) = 𝑟′0 (34)

In Eq. 33 𝐫̇ represents the first derivative with respect to 𝑡, and
𝐫′ represents the first derivative with respect to 𝜆.
The proposed constrained expression is analogous to Eq. 9,

given by Eq. 35.

𝐫(𝜆) = 𝐠(𝜆) + 𝜈1𝐩(𝜆) + 𝜈2𝐪(𝜆) (35)

Applying the TFC we obtain the Eq. 36,

r(𝜆) = 𝝈𝑇
[
h(𝜆) − h0 − (1 + 𝜆)h′0

]
+ r0 + (1 + 𝜆)r′0 (36)

which calculates the value of r(𝜆) for every desired time value
(dimensionless in the range of the 𝜆 variable). The matrix Υ and
the vector 𝜐 are given by Eqs. 37 and 38.

Υ𝑖𝑗 = 𝑐2h′′𝑗 (𝜆𝑖) +
𝜇
r3
(1 + 𝜆)

[
h𝑗(𝜆𝑖) − h0 − (1 + 𝜆)h′0

]
(37)

𝜐𝑖𝑗 =
𝜇
r3
[
(𝑟0 + 𝑟′0) + 𝑟′0𝜆

]
(38)

The assembly of the matrix Υ follows the same logic presented
in Eq. 23.
In a two-dimensional 2BP, that is, in the case where the

trajectory is calculated in the orbital plane only, two variables
are calculated (x and y). It is worth noting the difference between
the cases of circular and elliptical orbits. The problem of circular
orbits can be solved in different ways:

• If it is not assumed that r(𝑡) is constant before to start the
calculations, the problem can be solved in two different ways:

– In a decoupled form, considering the variables 𝑥 and 𝑦
independently and assembling two systems, as shown
in Eq. 40, and solving them independently,

– or in a coupled form, solving one system as shown in
Eq. 41, with both variables together,

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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-2

-1

0

1

2

3

4

5

x
(k

m
)

10
4

Analytical solution

Solution via TFC (m=15, N=60)

Figure 1. Temporal evolution traces of the circular orbital trajectory on the
x-axis, in the two-body problem, for the analytical solution (continuous
line) and the solution obtained by TFC (black circles).

𝚼𝑥𝝈𝑇0𝑥 = 𝝊𝑥 (39)
𝚼𝑦𝝈𝑇0𝑦 = 𝝊𝑦

𝚼 = [
𝚼𝑥 0
0 𝚼𝑦

] (40)

𝝈 = [
𝝈0𝑥
𝝈0𝑦

]

𝝊 = [
𝝊𝑥
𝝊𝑦
]

where the subscript 𝑥 indicates that the respective matrices
and vectors pertain to the calculation of 𝑥(𝜆), and the
subscript 𝑦 pertains to the calculation of 𝑦(𝜆).

• If it is assumed that r(𝑡) is constant before to start the
calculations, the problem can be solved for only one variable
𝑥 or 𝑦 (one of the Eqs. 40). The set of 𝝈 is valid for both
variables. Of course, assuming this premise means that
there is no need to perform the calculations; however, in
any case, this situation is presented for educational purposes
to demonstrate the internal consequences of the method.

The trajectories on the x- and y-axes are shown in Figures 1 and
2, respectively, and the complete orbit is shown in Figure 3, for
a bi-dimensional geostationary circular orbit with the following
initial conditions: position (422450 0) km, velocity (0 3.0722) km/s,
and considering 15 Legendre polynomial terms (𝑚 = 15) in the
calculation, with evaluations every 60 instants of time (𝑁 = 60).
The calculated error was 7.5 × 10−12, which was sufficiently low.
This is a very important test for the TFC. The results are very

close to the analytical solutions, which demonstrates the efficiency
of the TFC.
The problem of elliptical orbits can only be solved in a coupled

form by solving the system given by Eq. 41, with both variables
at the same time. As an example, a situation was simulated with
orbital elements equal to those of the geocentric orbit, but with an
eccentricity of 0.1. The initial conditions then become: position
(38020, 0) km and velocity (0, 3.3964) km/s. The simulation
was segmented into four intervals of 6 hours each, because the
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Figure 2. Temporal evolution of the circular orbital trajectory on the
y-axis in the 2BP.

-5 0 5

x(km) 104

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
(k

m
)

104

Analytical solution

Solution via TFC (m=15, N=60)

Figure 3. Circular orbit trajectory in the 2BP: TFC results vs analytical
solution.

TFC presents some problems when dealing with closed and/or
periodic orbits. Therefore, Figures 4 and 5 present four quadrants,
each equivalent to a 6-hour simulation. A total of 15 Legendre
polynomial terms were considered (𝑚 = 15), and 30 time instants
were evaluated (𝑁 = 30) for each segment. The errors obtained
for 𝝈0 were in the order of 10−7 and, with 3 iterations, using the
DE linearization proposed in Eqs. 27 and 28, errors in the order
of 10−12 were obtained.

The loss function and its derivative with respect to 𝝈 are given
by Eqs. 41 and 42, respectively.

ℒ = 𝑐2r′′ +
𝜇
‖r‖3

r (41)

Analytical solution
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Figure 4. Elliptical orbit trajectory in the two-body problem: TFC results
vs analytical solution.
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Figure 5. Temporal evolution of radius vector r(𝜆) in a elliptical orbital
trajectory in the 2BP: TFC results vs analytical solution.

ℒ = 𝑐2𝝈𝑇h′′+
𝜇
‖r‖3

{
𝝈𝑇

[
h(𝜆) − h0 − (1 + 𝜆)h′0

]
+ r0 + (1 + 𝜆)r′0

}

(42)
The complete elliptical orbit is illustrated in Figure 4 and the

radius vector r(𝜆) is illustrated in Figure 5. Again, the results
are very close to the analytical solutions, and the behavior of the
elliptical orbit is correctly demonstrated.

4. CIRCULAR RESTRICTED THREE-BODY PROBLEM
SOLVED VIA THEORY OF FUNCTIONAL
CONNECTIONS

The problem of temporary gravitational capture addressed in
this study is modeled based on the circular restricted three-body
problem (CR3BP). In thismodel, themovement of the primaries is
considered around their barycenter, and the movement of body 𝐵3
around the primary is studied, as illustrated in Figure 6. Body 𝐵1
is called the primary body, whereas body𝐵2 is called the secondary
or disturbing body.
The movement of body 𝐵3 can be calculated in both the inertial

reference system (𝜉-𝜂) and the rotating system (𝑥-𝑦), with the
same origin of the inertial system that rotates with an angular
velocity equal to the movement of bodies 𝐵1 and 𝐵2 around the
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Figure 6. Schematic model of the restricted circular three-body problem
(inertial and rotating reference frames).

barycenter. In other others, the primary and secondary do not
move in the rotating system.

4.1. Solving the CR3BP initial value problem, with equations
in the inertial frame, via TFC

The equations of motion that describe the trajectory of body 𝐵3
in the inertial system of reference are given by Eqs 43 and 44
for 𝜉 and 𝜂 respectively (𝜉 and 𝜂 are components of vector 𝜌23
illustrated in Figure 6). These equations are already formatted as
Eq. 1 and it is easy to identify the DE coefficients (Eqs. 46 and
47).

𝜉+[
𝜇

|||𝜌13|||
3 +

(1 − 𝜇)
|||𝜌23|||

3 ]𝜉=−[
−𝜇(1 − 𝜇) cos(𝜏)

|||𝜌13|||
3 +

(1 − 𝜇)𝜇 cos(𝜏)
|||𝜌23|||

3 ]

(43)

𝜂 + [
𝜇

|||𝜌13|||
3 +

(1 − 𝜇)
|||𝜌23|||

3 ]𝜂=−[
−𝜇(1 − 𝜇) sin(𝜏)

|||𝜌13|||
3 +

(1 − 𝜇)𝜇 sin(𝜏)
|||𝜌23|||

3 ]

(44)
where 𝜌13 and 𝜌23 are given by Eq. 45.

|𝜌13|2 = [𝜉𝑏3 − (1 − 𝜇)∗ cos 𝜏]2 + [𝜂𝑏3 − (1 − 𝜇)∗ sin 𝜏]2 + (𝜁𝑏3)2

|𝜌23|2 = (𝜉𝑏3 + 𝜇∗ cos 𝜏)2 + (𝜂𝑏3 + 𝜇∗ sin 𝜏)2 + (𝜁𝑏3)2

(45)

In Eqs. 43, 43 and 45, 𝜇 is the gravitational constant, 𝜌13 is the
distance from body 𝐵1 (primary) to body 𝐵3, 𝜌23 is the distance
from body 𝐵2 (secondary) to body 𝐵3, and 𝜏 is the time. All the
variables were dimensionless.

𝑓2𝜉 =1
𝑓1𝜉 =0

𝑓0𝜉 =
𝜇

|||𝜌13|||
3 +

(1 − 𝜇)
|||𝜌23|||

3

𝑓𝜉 = − [
−𝜇(1 − 𝜇) cos(𝜏)

|||𝜌13|||
3 +

(1 − 𝜇)𝜇 cos(𝜏)
|||𝜌23|||

3 ]

(46)

𝑓2𝜂 =1
𝑓1𝜂 =0

𝑓0𝜂 =
𝜇

|||𝜌13|||
3 +

(1 − 𝜇)
|||𝜌23|||

3

𝑓𝜂 = − [
−𝜇(1 − 𝜇) sin(𝜏)

|||𝜌13|||
3 +

(1 − 𝜇)𝜇 sin(𝜏)
|||𝜌23|||

3 ]

(47)

In Eqs. 46 and 47, 𝑓2𝜉 , 𝑓1𝜉 , 𝑓0𝜉 and 𝑓𝜉 are the equivalent values
of 𝐟2(𝑡), 𝐟1(𝑡), 𝐟0(𝑡) and 𝐟 (𝑡), presented in Eq. 1, for Eq. 43 and 𝑓2𝜂 ,
𝑓1𝜂 , 𝑓0𝜂 and 𝑓𝜂 are the equivalent values for Eq. 44.

Following the step-by-step process presented previously for
TFC, the following expressions can be obtained for the matrix Υ
and the vector 𝜐 for the coordinates 𝜉 (Eqs. 48 and 49) and 𝜂 (Eqs.
50 and 51), respectively:

Υ𝜉𝑖𝑗 = 𝑐2𝐡′′(𝜆) + 𝐟0𝜉(𝜆)
[
𝐡(𝜆) − ℎ0 − (1 + 𝜆)ℎ′0

]
(48)

𝝊𝜉𝑖 (𝜆) = 𝑓𝜉 − 𝑓0𝜉 [𝜉0 + (1 + 𝜆)
𝜉̇0
𝑐 ] (49)

Υ𝜂𝑖𝑗 = 𝑐2𝐡′′(𝜆) + 𝐟0𝜂(𝜆)
[
𝐡(𝜆) − ℎ0 − ℎ′0

]
(50)

𝝊𝜂𝑖 (𝜆) = 𝑓𝜂 − 𝑓0𝜂 [𝜂0 + (1 + 𝜆)
𝜂̇0
𝑐 ] (51)

whereΥ𝜉𝑖𝑗 is the 𝑖𝑗-th element of thematrixΥ𝜉 , which corresponds
to the matrix Υ used for the calculation of 𝜉(𝜆), 𝜐𝜉𝑖 is the 𝑖-th
element of the vector 𝝊𝜉 , which corresponds to the vector 𝝊 used
for the calculation of 𝜉(𝜆) and Υ𝜂𝑖𝑗 and 𝝊𝜂𝑖 (𝜆) are the equivalent
values for 𝜂(𝜆).

The constrained expressions become Eqs. 52 and 53,

𝜉(𝜆) = 𝝈𝜉
[
𝐡(𝜆) − ℎ0 − (1 + 𝜆) ℎ′0

]
+ 𝜉0 +

𝜉̇0
𝑐 (1 + 𝜆) (52)

𝜂(𝜆) = 𝝈𝜂
[
𝐡(𝜆) − ℎ0 − (1 + 𝜆) ℎ′0

]
+ 𝜂0 +

𝜂̇0
𝑐 (1 + 𝜆) (53)

where, ℎ0 and ℎ′0 are, respectively, 𝐡(𝜆) and 𝐡′(𝜆) calculated for
𝜆 = −1. The quantities 𝜉̇0 and 𝜂̇0 are the components of the initial
velocity.

The loss functions for 𝜉 and 𝜂 are given, respectively, by Eqs.
54 and 55,
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ℒ𝜉(𝜉, 𝜉
′′ , 𝜂, 𝝈𝜉 , 𝝈𝜂) =𝑐2𝜉

′′ +
𝜇 [𝜉 − 𝜉𝑏1]

[
(𝜉 − 𝜉𝑏1)

2 + (𝜂 − 𝜂𝑏1)
2]3∕2

+

(1 − 𝜇) [𝜉 − 𝜉𝑏2]
[
(𝜉 − 𝜉𝑏2)

2 + (𝜂 − 𝜂𝑏2)
2]3∕2

(54)

ℒ𝜂(𝜂, 𝜂
′′ , 𝜉, 𝝈𝜂 , 𝝈𝜉) =𝑐2𝜂

′′ +
𝜇 [𝜂 − 𝜂𝑏1]

[
(𝜉 − 𝜉𝑏1)

2 + (𝜂 − 𝜂𝑏1)
2]3∕2

+

(1 − 𝜇) [𝜂 − 𝜂𝑏2]
[
(𝜉 − 𝜉𝑏2)

2 + (𝜂 − 𝜂𝑏2)
2]3∕2

(55)

where 𝜉𝑏1 and 𝜂𝑏1 are the equivalent components 𝜉 and 𝜂 for body
𝐵1, 𝜉𝑏2 and 𝜂𝑏2 are the equivalent components 𝜉 and 𝜂 for body
𝐵2, and ℒ𝜉 and ℒ𝜂 are the loss functions for each component
individually.
The Jacobian (J) is given by Eq. 56 and its components are

presented in Eqs. 57, 58, 59 and 60.

𝐽 = (𝜕ℒ
𝜕𝝈

)
𝑇

𝑘
=
⎡
⎢
⎢
⎣

𝜕ℒ𝜉
𝜕𝝈𝜉

𝜕ℒ𝜂
𝜕𝝈𝜉

𝜕ℒ𝜉
𝜕𝝈𝜂

𝜕ℒ𝜂
𝜕𝝈𝜂

⎤
⎥
⎥
⎦

(56)

𝜕ℒ𝜉

𝜕𝝈𝜉
=𝑐2𝐡′′ + [−

3𝜇 (𝜉 − 𝜉𝑏1)
2

𝜌513
+

𝜇
𝜌513

−
3(1 − 𝜇) (𝜉 − 𝜉𝑏2)

2

𝜌523
+

[
1 − 𝜇
𝜌523

]
[
𝐡 − ℎ0 − (1 + 𝜆)ℎ′

0

]

(57)

𝜕ℒ𝜉

𝜕𝝈𝜂
=[−

3𝜇 (𝜉 − 𝜉𝑏1) (𝜂 − 𝜂𝑏1)
𝜌513

−
3(1 − 𝜇) (𝜉 − 𝜉𝑏2) (𝜂 − 𝜂𝑏2)

𝜌523
]

[
𝐡 − ℎ0 − (1 + 𝜆)ℎ′

0

]

(58)

𝜕ℒ𝜂

𝜕𝝈𝜂
=𝑐2𝐡′′ + [−

3𝜇 (𝜂 − 𝜂𝑏1)
2

𝜌513
+

𝜇
𝜌513

−
3(1 − 𝜇) (𝜂 − 𝜂𝑏2)2

𝜌523
+

1 − 𝜇
𝜌523

]
[
𝐡 − ℎ0 − (1 + 𝜆)ℎ′

0

]

(59)

𝜕ℒ𝜂

𝜕𝝈𝜉
=[−

3𝜇 (𝜉 − 𝜉𝑏1) (𝜂 − 𝜂𝑏1)
𝜌513

−
3(1 − 𝜇) (𝜉 − 𝜉𝑏2) (𝜂 − 𝜂𝑏2)

𝜌523
]

[
𝐡 − ℎ0 − (1 + 𝜆)ℎ′

0

]

(60)

4.2. Solving the CR3BP boundary value problem, with
equations in the inertial frame, via TFC

The boundary value problem can also be solved using TFC. In this
case, it is sufficient to consider the boundary conditions in the
matrix given in Eq. 11 instead of the initial conditions, as shown
in Eq. 61.

⎡
⎢
⎢
⎢
⎢
⎣

𝜉(𝜆1)
𝜉(𝜆2)
𝜂(𝜆1)
𝜂(𝜆2)

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝐩𝜉(𝜆1) 𝐪𝜉(𝜆1) 0 0
𝐩𝜉(𝜆2) 𝐪𝜉(𝜆2) 0 0
0 0 𝐩𝜂(𝜆1) 𝐪𝜂(𝜆1)
0 0 𝐩𝜂(𝜆2) 𝐪𝜂(𝜆2)

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝜈1𝜉
𝜈2𝜉
𝜈1𝜂
𝜈2𝜂

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝐠(𝜆1)
𝐠(𝜆2)
𝐠(𝜆1)
𝐠(𝜆2)

⎤
⎥
⎥
⎥
⎥
⎦

(61)
Following the same process, the following expressions can be

obtained for the matrix Υ and vector 𝜐 for the coordinates 𝜉 (Eqs.
62 and 63) and 𝜂 (Eqs. 64 and 65), respectively.

Υ𝜉𝑖𝑗 = 𝑐2𝐡′′(𝜆) + 𝐟0𝜉(𝜆) [𝐡(𝜆) − (1 − 𝜆
2 ) ℎ0 − (1 + 𝜆

2 ) ℎ𝑓] (62)

𝝊𝜉𝑖 (𝜆) = 𝑓𝜉 − 𝑓0𝜉 [(
𝜉0 + 𝜉𝑓

2 ) + (
𝜉𝑓 − 𝜉0

2 ) 𝜆] (63)

Υ𝜂𝑖𝑗 = 𝑐2𝐡′′(𝜆) + 𝐟0𝜂(𝜆) [𝐡(𝜆) − (1 − 𝜆
2 ) ℎ0 − (1 + 𝜆

2 ) ℎ𝑓] (64)

𝝊𝜂𝑖 (𝜆) = 𝑓𝜂 − 𝑓0𝜂 [(
𝜂0 + 𝜂𝑓

2 ) + (
𝜂𝑓 − 𝜂0

2 ) 𝜆] (65)

The constrained expressions become Eqs. 66 and 67,

𝜉(𝜆) =𝝈𝜉 [𝐡(𝜆) − (1 − 𝜆
2 ) ℎ0 − (1 + 𝜆

2 ) ℎ𝑓] + (
𝜉0 + 𝜉𝑓

2 )+

(
𝜉𝑓 − 𝜉0

2 ) 𝜆

(66)

𝜂(𝜆) =𝝈𝜂 [𝐡(𝜆) − (1 − 𝜆
2 ) ℎ0 − (1 + 𝜆

2 ) ℎ𝑓] + (
𝜂0 + 𝜂𝑓

2 )+

(
𝜂𝑓 − 𝜂0

2 ) 𝜆

(67)

where ℎ𝑓 is the function 𝐡(𝜆) calculated for 𝜆 = 1. The quantities
𝜉0 and 𝜉𝑓 are, respectively, the initial and final 𝜉 positions, and 𝜂0
and 𝜂𝑓 are, respectively, the initial and final 𝜂 positions.
Since the equation of motion is the same regardless of whether

the problem is an IVP or a BVP, the loss function are the same
(Eqs. 54 and 55) and, consequently, the Jacobian is also the same
(Eqs. 57, 58, 59 and 60) for both problems.

4.3. Solving the CR3BP initial value problem, with equations
in the rotating frame, via TFC

Let us now analyze the orbital dynamics in the rotating referential
system. The equations of motion that describe the trajectory of
body 𝐵3 in this frame are given by Eqs. 68 and 69, where r13 and
r23 are given by Eq. 70, for 𝑥 and 𝑦, respectively (𝑦 and 𝑦 are
components of vector r23 illustrated in Figure 6).

𝑥̈ + [
𝜇

|||𝐫13|||
3 +

(1 − 𝜇)
|||𝐫23|||

3 − 1] 𝑥 = 2𝑦̇ +
𝜇(1 − 𝜇)
|||𝐫13|||

3 −
(1 − 𝜇)𝜇
|||𝐫23|||

3 (68)

𝑦̈ + [
𝜇

|||𝐫13|||
3 +

(1 − 𝜇)
|||𝐫23|||

3 − 1] 𝑦 = −2𝑥̇ (69)
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𝐫213 = (𝑥 + 𝜇)2 + 𝑦2 + 𝑧2

𝐫223 = [𝑥 − (1 − 𝜇)]2 + 𝑦2 + 𝑧2
(70)

These equations are already formatted as Eq. 1 and it is easy to
identify the DE coefficients (Eqs. 71 and 72).
In Eqs. 68, 69 and 70, 𝑟13 is the distance from body 𝐵1 (primary)

to body 𝐵3, 𝑟23 is the distance from body 𝐵2 (secondary) to body
𝐵3.

𝑓2𝑥 =1
𝑓1𝑥 =0

𝑓0𝑥 =
𝜇

|||𝐫13|||
3 +

(1 − 𝜇)
|||𝐫23|||

3 − 1

𝑓𝑥 =2𝑦̇ +
𝜇(1 − 𝜇)
|||𝐫13|||

3 −
(1 − 𝜇)𝜇
|||𝐫23|||

3

(71)

𝑓2𝑦 =1
𝑓1𝑦 =0

𝑓0𝑦 =
𝜇

|||𝐫13|||
3 +

(1 − 𝜇)
|||𝐫23|||

3 − 1

𝑓𝑦 = − 2𝑥̇

(72)

In Eqs. 71 and 72, 𝑓2𝑥 , 𝑓1𝑥 , 𝑓0𝑥 and 𝑓𝑥 are the equivalent values
of 𝐟2(𝑡), 𝐟1(𝑡), 𝐟0(𝑡) and 𝐟 (𝑡), presented in Eq. 1, for Eq. 68 and 𝑓2𝑦 ,
𝑓1𝑦 , 𝑓0𝑦 and 𝑓𝑦 are the equivalent values for Eq. 69.
In a rotating system, it is important to define the sphere

of influence, which demarcates the limit at which the
vehicle/satellite/body is considered captured or not.
The sphere of influence of the primary of radius 𝑟𝐸 is given by

73.

𝐫𝐸 = (
𝜇

1 − 𝜇)
2
5

(73)

The following expressions can be obtained for the matrix Υ and
vector 𝜐 for the coordinates 𝑥 (Eqs. 74 and 75) and 𝑦 (Eqs. 76 and
77), respectively:

Υ𝑥𝑖𝑗 = 𝑐2𝐡′′(𝜆) + 𝐟0𝑥(𝜆)
[
𝐡(𝜆) − ℎ0 − (1 + 𝜆)ℎ′0

]
(74)

𝝊𝑥𝑖 (𝜆) = 𝑓𝑥 − 𝑓0𝑥 [𝑥0 + (1 + 𝜆)
𝑥̇0
𝑐 ] (75)

Υ𝑦𝑖𝑗 = 𝑐2𝐡′′(𝜆) + 𝐟0𝑦(𝜆)
[
𝐡(𝜆) − ℎ0 − (1 + 𝜆)ℎ′0

]
(76)

𝝊𝑦𝑖 (𝜆) = 𝑓𝑦 − 𝑓0𝑦 [𝑦0 + (1 + 𝜆)
𝑦̇0
𝑐 ] (77)

whereΥ𝑥𝑖𝑗 is the 𝑖𝑗-th element of thematrixΥ𝑥 , which corresponds
to the matrix Υ used for the calculation of 𝑥(𝜆), 𝜐𝑥𝑖 is the 𝑖-th
element of the vector 𝝊𝑥 , which corresponds to the vector 𝝊 used
for the calculation of 𝑥(𝜆) and Υ𝑦𝑖𝑗 and 𝝊𝑦𝑖 (𝜆) are the equivalent
values for 𝑦(𝜆).
The constrained expressions become Eqs. 78 and 79.

𝐱(𝜆) = 𝝈𝑥
[
𝐡(𝜆) − ℎ0 − (1 + 𝜆) ℎ′0

]
+ (𝑥0 +

𝑥̇0
𝑐 ) +

𝑥̇0
𝑐 𝜆 (78)

𝐲(𝜆) = 𝝈𝑦
[
𝐡(𝜆) − ℎ0 − (1 + 𝜆) ℎ′0

]
+ (𝑦0 +

𝑦̇0
𝑐 ) +

𝑦̇0
𝑐 𝜆 (79)

The loss functions for 𝑥 and 𝑦 are given by Eqs. 80 and 81
respectively, while the jacobian components are given by Eqs. 82,
83, 84 and 85.

ℒ𝑥(𝑥, 𝑥
′′ , 𝑦, 𝑦′ , 𝝈𝑥 , 𝝈𝑦)=𝑐2𝑥

′′−2𝑐𝑦′+
𝜇 [𝑥 − 𝑥𝑏1]

[
(𝑥−𝑥𝑏1)

2+(𝑦−𝑦𝑏1)
2]3∕2

+

(1 − 𝜇) [𝑥 − 𝑥𝑏2]
[
(𝑥 − 𝑥𝑏2)

2 + (𝑦 − 𝑦𝑏2)
2]3∕2

(80)

ℒ𝑦(𝑦, 𝑦
′′ , 𝑥, 𝑥′ , 𝝈𝑦 , 𝝈𝑥)=𝑐2𝑦

′′+2𝑐𝑥′+
𝜇 [𝑦 − 𝑦𝑏1]

[
(𝑥 − 𝑥𝑏1)

2 + (𝑦 − 𝑦𝑏1)
2]3∕2

+

(1 − 𝜇) [𝑦 − 𝑦𝑏2]
[
(𝑥 − 𝑥𝑏2)

2+(𝑦 − 𝑦𝑏2)
2]3∕2

(81)

𝜕ℒ𝑥

𝜕𝝈𝑥
=𝑐2𝐡′′ + [−1 −

3𝜇 (𝑥 − 𝑥𝑏1)
2

𝑟513
+

𝜇
𝑟513

−
3(1 − 𝜇) (𝑥 − 𝑥𝑏2)

2

𝑟523
+

1 − 𝜇
𝑟523

]
[
𝐡 − ℎ0 − (1 + 𝜆)ℎ′

0

]

(82)

𝜕ℒ𝑥

𝜕𝝈𝑦
=[−

3𝜇 (𝑥 − 𝑥𝑏1) 𝑦
𝑟513

−
3(1 − 𝜇) (𝑥 − 𝑥𝑏2) 𝑦

𝑟523
]

[
𝐡 − ℎ0 − (1 + 𝜆)ℎ′

0

]
− 2𝑐

[
𝐡′ − ℎ′

0

] (83)

𝜕ℒ𝑦

𝜕𝝈𝑦
=𝑐2𝐡′′ + [−1 −

3𝜇𝑦2

𝑟513
+

𝜇
𝑟513

−
3(1 − 𝜇)𝑦2

𝑟523
+
1 − 𝜇
𝑟523

]
[
𝐡 − ℎ0 − (1 + 𝜆)ℎ′

0

] (84)

𝜕ℒ𝑦

𝜕𝝈𝑥
=[−

3𝜇 (𝑥 − 𝑥𝑏1) 𝑦
𝑟513

−
3(1 − 𝜇) (𝑥 − 𝑥𝑏2) 𝑦

𝑟523
]

[
𝐡 − ℎ0 − (1 + 𝜆)ℎ′

0

]
+ 2𝑐

[
𝐡′ − ℎ′

0

] (85)

where 𝑥𝑏1 and 𝑦𝑏1 are the equivalent components 𝑥 and 𝑦 for
the body 𝐵1, 𝑥𝑏2, and 𝑦𝑏2 are the equivalent components 𝑥 and
𝑦 for the body 𝐵2, and ℒ𝑥 and ℒ𝑦 are the loss function for each
component individually.

4.4. Solving the CR3BP boundary value problem, with
equations in the rotating frame, via TFC

The boundary value problem for the equations in the rotating
frame is presented next: the following expressions can be obtained
for the matrix Υ and vector 𝜐 for the coordinates 𝑥 (Eqs. 86 and
87) and 𝑦 (Eqs. 88 and 89), respectively:
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Υ𝑥𝑖𝑗 = 𝑐2𝐡′′(𝜆)+ 𝐟0𝑥(𝜆) [𝐡(𝜆) − (1 − 𝜆
2 ) ℎ0 − (1 + 𝜆

2 ) ℎ𝑓] , (86)

𝝊𝑥𝑖 (𝜆) = 𝑓𝑥 − 𝑓0𝑥 [(
𝑥0 + 𝑥𝑓

2 ) + (
𝑥𝑓 − 𝑥0

2 ) 𝜆] , (87)

Υ𝑦𝑖𝑗 = 𝑐2𝐡′′(𝜆) + 𝐟0𝑦(𝜆) [𝐡(𝜆) − (1 − 𝜆
2 ) ℎ0 − (1 + 𝜆

2 ) ℎ𝑓] , (88)

𝝊𝑦𝑖 (𝜆) = 𝑓𝑦 − 𝑓0𝑦 [(
𝑦0 + 𝑦𝑓

2 ) + (
𝑦𝑓 − 𝑦0

2 ) 𝜆] . (89)

The constrained expressions become Eqs. 90 and 91:

𝐱(𝜆) =𝝈𝑥 [𝐡(𝜆) − (1 − 𝜆
2 ) ℎ0 − (1 + 𝜆

2 ) ℎ𝑓]+

(
𝑥0 + 𝑥𝑓

2 ) + (
𝑥𝑓 − 𝑥0

2 ) 𝜆,
(90)

𝐲(𝜆) =𝝈𝑦 [𝐡(𝜆) − (1 − 𝜆
2 ) ℎ0 − (1 + 𝜆

2 ) ℎ𝑓]+

(
𝑦0 + 𝑦𝑓

2 ) + (
𝑦𝑓 − 𝑦0

2 ) 𝜆.
(91)

The same comment regarding the loss functions and the
Jacobian is valid here. The expressions are the same, regardless
of whether the problem is an IVP or a BVP.

5. TEMPORARY GRAVITATIONAL CAPTURE VIA
THEORY OF FUNCTIONAL CONNECTIONS

Temporary gravitational capture is defined by Yamakawa (1992)
and Prado & Vieira Neto (2006) as a process in which a particle
approaching from outside the sphere of influence may attain
a low relative velocity with a celestial body and even rotate
around it temporarily without utilizing any other effects than
the gravitational force.
Inmany cases, the system is composed of three bodies, in which

one body (𝐵3) orbits a primary and is subject to disturbance from
the third body (𝐵2). Therefore, this case can be modeled through
the restricted three-body problem in either its circular or elliptical
version. In this study, only the circular version is addressed.
The 𝐵3 trajectory is simulated (usually using numerical

integration) in the backward time direction. Every escape in
backward time (this means crossing the sphere of influence r𝐸)
corresponds to a gravitational capture in the forward time (Earth-
moon, 2006).
By analyzing the equations ofΥmatrix and 𝜐 vector for the cases

presented previously, it can be observed that it is necessary to know
the values of 𝜌13 and 𝜌23 (considering the equations in the inertial
system) or 𝑟13 and 𝑟23 (considering the equations in the rotating
system) for each value of 𝜆𝑖 to perform the calculations. Therefore,
it is necessary to start the method with these approximate values.
For example, numerical integration can be performed using a
simple integrator.
Let’s take, as an example, an orbit analyzed in Yamakawa’s

thesis (Yamakawa, 1992) (page 45, orbit 2). This is the Earth-
Moon-Sun system, where the movement of the Moon around the
Earth is studied, with the perturbation by the Sun. The trajectories
in the inertial frame and in the rotating frame are illustrated in
Figures 7 and 8. These results were generated from a numerical
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Figure 7. Moon’s orbit in the Earth-Moon-Sun system presented in
the inertial frame. Reproduction of orbit 2, on page 45, from Hiroshi
Yamakawa’s doctoral thesis.

Table 1. Organization of Subfigure Indices for Figures 9 and 10

Figure Axis IVP/BVP Frame

9(a) and 10(a) 𝜉 IVP Inertial
9(b) and 10(b) 𝜂 IVP Inertial
9(c) and 10(c) 𝑥 IVP Rotating
9(d) and 10(d) 𝑦 IVP Rotating
9(e) and 10(e) 𝜉 BVP Inertial
9(f) and 10(f) 𝜂 BVP Inertial
9(g) and 10(g) 𝑥 BVP Rotating
9(h) and 10(h) 𝑦 BVP Rotating

integration through the initial conditions provided in Yamakawa’s
thesis, considering the CR3BP.
The range of interest here is within the borders of the Earth’s

sphere of influence (body 𝐵1). This same trajectory was calculated
via TFC for each of the previously presented forms (IVP-inertial,
BVP-inertial, IVP-rotating, IVP-rotating). For each of these
cases, the error was evaluated versus the number of terms of the
polynomial series (𝑚) (Figure 9) and the number of time instants
evaluated (𝑁) (Figure 10).
The errors (𝜖) are presented in Figures 9 and 10 as a function

of𝑚 and 𝑁, respectively. The errors are presented in 𝑙𝑜𝑔10𝜖 form
to facilitate their visualization. The subfigure indices in Figures 9
and 10 are organized according to the layout presented in Table 1.
For each case presented in Figure 9 the error was evaluated in a

range of𝑚 from 5 to 25 terms of polynomial series and 𝑁 from𝑚
to 4 × 𝑚. For example, for𝑚 = 5, the range of 𝑁 is from 5 to 20;
for𝑚 = 6, the range of 𝑁 is from 6 to 24; etc. The error reduces
slightly for all cases except 𝑁 = 20, which presents a decreasing
curve versus 𝑚 with a significant reduction near 𝑚 = 20. This
is because when the matrix Υ is almost square, the errors are
smaller, and when𝑚 = 𝑁 they are minimal for the calculation of
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Figure 8. Moon’s orbit in the Earth-Moon-Sun system presented in
the rotating frame. Reproduction of orbit 2, on page 45, from Hiroshi
Yamakawa’s doctoral thesis.

-10

-5

0

5

lo
g

1
0
 (

)

a)

N=20

N=40

N=60

N=80

N=100

b)

N=20

N=40

N=60

N=80

N=100

-10

-5

0

5

lo
g

1
0
 (

)

c)

N=20

N=40

N=60

N=80

N=100

d)

N=20

N=40

N=60

N=80

N=100

-10

-5

0

5

lo
g

1
0
 (

)

e)

N=20

N=40

N=60

N=80

N=100

f)

N=20

N=40

N=60

N=80

N=100

0 5 10 15 20 25

m

-10

-5

0

5

lo
g

1
0
 (

)

g)

N=20

N=40

N=60

N=80

N=100

0 5 10 15 20 25

m

h)

N=20

N=40

N=60

N=80

N=100

Figure 9. Log base 10 of error (𝜖) in function of the number of polynomials
for Moon’s orbit in the Earth-Moon-Sun system (case for Yamakawa’s
doctoral thesis). Initial value problem cases: (a)(b)(c)(d). Boundary value
problem cases: (e)(f)(g)(h). Inertial system: (a)(b)(e)(f). Rotating system:
(c)(d)(g)(h). x or 𝜉 axis: (a)(c)(e)(g). y or 𝜂 axis: (b)(d)(f)(h).

𝝈0. The system is determined for𝑚 = 𝑁 and the solution is given
directly by the inversion of the matrix Υ. In cases where 𝑁 > 𝑚,
the solution is approximately given by the least-squares method.
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Figure 10. Log base 10 of error (𝜖) in function of the number of instant of
times (N) in that the solution is evaluated for Moon’s orbit in the Earth-
Moon-Sun system (case for Yamakawa’s doctoral thesis). Initial value
problem cases: (a)(b)(c)(d). Boundary value problem cases: (e)(f)(g)(h).
Inertial system: (a)(b)(e)(f). Rotating system: (c)(d)(g)(h). x or 𝜉 axis:
(a)(c)(e)(g). y or 𝜂 axis: (b)(d)(f)(h).

Another behavior observed in Figure 9 is that as the number
of terms in the Legendre polynomial series increases, the error
(𝜖) decreases (albeit discreetly), because the series represents the
solution more accurately.
Another notable fact is that the behavior of all curves (different

values of 𝑁) is very similar between all sub-Figures (a), (b), (c),
(d), (e), (f), (g), and (h), being therefore indifferent to the type of
system chosen (inertial or rotating) and to the type of problem
for solving the differential equations (IVP or BVP). A comparison
between these errors is presented later in this paper.
For each case presented in Figure 10 the error was evaluated

under the same conditions as in the previous case (Figure 9).
The error increases slightly for all cases and presents a

significant reduction for low values of 𝑁. This reduction, as in
the case of Figure 9, always occurs for cases where the value of 𝑁
approaches the value of𝑚, and is minimum for𝑚 = 𝑁. This is
also because when the matrix Υ is almost square, the errors are
smaller, and when𝑚 = 𝑁 they are minimal for the calculation of
𝝈0.
Another behavior observed in Figure 10 is that in the regions

where 𝑁 is sufficiently greater than 𝑚, which means the "flat"
error zone, as the number of points evaluated (𝑁) increases, the
error increases slightly. This occurs because there is a loss of
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Table 2. Organization of Subfigure Indices for Figures 11 and 12

Figure Data

Figures 11(a)
and 12(a)

Ratio between the error (𝜖) for calculation of 𝜉-axis from the orbit calculated through the IVP in the Inertial
System, and the error (𝜖) for calculation of 𝑥-axis from the orbit calculated through the IVP in the Rotating
System.

Figures 11(b)
and 12(b)

Ratio between the error (𝜖) for calculation of 𝜂-axis from the orbit calculated through the IVP in the Inertial
System, and the error (𝜖) for calculation of 𝑦-axis from the orbit calculated through the IVP in the Rotating
System.

Figures 11(c)
and 12(c)

Ratio between the error (𝜖) for calculation of 𝜉-axis from the orbit calculated through the BVP in the Inertial
System, and the error (𝜖) for calculation of 𝑥-axis from the orbit calculated through the IVP, in the Rotating
System.

Figures 11(d)
and 12(d)

Ratio between the error (𝜖) for calculation of 𝜂-axis from the orbit calculated through the BVP in the Inertial
System, and the error (𝜖) for calculation of 𝑦-axis from the orbit calculated through the IVP in the Rotating
System.

Figures 11(e)
and 12(e)

Ratio between the error (𝜖) for the calculation of 𝑥-axis from the orbit calculated through the BVP in the
Rotating System, and the error (𝜖) for the calculation of 𝑥-axis from the orbit calculated through the IVP in
the Rotating System.

Figures 11(f)
and 12(f)

Ratio between the error (𝜖) for the calculation of 𝑦-axis from the orbit calculated through the BVP, in the
Rotating System and the error (𝜖) for the calculation of 𝑦-axis from the orbit calculated through the IVP, in
the Rotating System.

response quality via TFC when evaluating the solution at more
points. The greater the number of time instants to be evaluated,
the greater the number of terms in the polynomial series needed
to keep the errors at a satisfactory level; otherwise, the matrix
Υ𝑁×𝑚 begins to present 𝑁 >> 𝑚 and deliver a not very accurate
solution.
As shown in Figure 9 the behavior shown in all subfigures of

Figure 10 is very similar, aside from the type of system chosen
(inertial or rotating) and to the type of problem for solving the
differential equations (IVP or BVP).
All these cases presented an initial solution error 𝝈0. However,

with some iterations (in the order of 2 to 5), it is possible to obtain
an error of less than 10−12 using the linearization of the DE around
the initial solution, as presented previously.
We now compare the errors for different frames and numerical

integration problems. In celestial mechanics studies, the most
common case is the IVP in the rotating frame because it is easy to
specify the initial conditions in this frame, and in general, the aim
is to make the trajectory of the body as a function of time, without
necessarily a spatial constraint at another instant in time, except
in studies such as orbital transfers. Therefore, this case will be
considered as the reference, and the errors of each of the other
cases will be compared with this one.
The same case studied in Figures 7, 8, 9 and 10 is simulated in

a range of 𝑚 between 5 and 25 and 𝑁 between 𝑚 and 4 × 𝑚 is
used to present the ratio between errors using different coordinate
systems and the numerical integration problem. The comparisons
are illustrated in Figures 11 and 12. The subfigure indices in
Figures 11 and 12, which present the dimensionless values (𝜖∕𝜖),
are organized according to the layout presented in Table 2.
Figure 11 presents the error ratio as a function of the number

of polynomials considered in the series (𝑚) and the number of
instants at which the solution is evaluated (𝑁). This shows that
the regions close to𝑚 = 𝑁 present a significant variation in errors
depending on the method chosen for the simulation. This is due
to the shape of the trajectories, which ends up altering the matrix
Υ and consequently the quality of the solution of the system given

by Eq. 22. This effect can be easily observed in the change in the
shape of the trajectories in the TFC method by analyzing Figures.
7 and 8 as an example and observing Eqs. 48, 49, 50, 51, 62, 63,
64, 65, 74, 75, 76, 77, 86, 87, 88 and 89. For regions not close to
𝑚 = 𝑁 the difference between the errors is significantly small,
which is demonstrated by an error ratio close to 1.
Figure 12 shows that for a𝑚 greater than 10 and 𝑁 > 𝑚, the

errors between the different strategies are equivalent. Very small
values of𝑚 are not practical and useful because, in those cases,
even using DE linearization, it is not possible to reduce the value
of errors at the machine level. In these cases, it is necessary to
increase the number of polynomials until the desired level of
accuracy is achieved.
Figure 12 also shows that for𝑁 = 𝑚 there is an error oscillation

when we compare the inertial and rotating frame data. It is also
possible to conclude for the BVP cases (c),(d),(e), and (f) that the
errors of the TFC calculation for the BVP problem are higher than
the errors for the same TFC calculation with the IVP problem (in
the rotating frame) for𝑚 > 15, which in practical terms suggests
that calculation through a BVP may not be the best option, or at
least not the most optimized one.
These local conclusions should be considered quite restricted,

since they refer to only one well-defined trajectory (the case cited
above in Dr. Yamakawa’s thesis), and there is the possibility that
they are not universal.
Future studies should investigate whether this behavior can be

verified independently of the studied system and initial conditions
(or contour conditions). Currently, it is worth noting that the
errors are equivalent and that each case may be interesting for
a particular type of study. IVPs may be useful for studying
the temporal response of a system, including cases in which
perturbations occur with nonconservative forces. BVPs are useful
for studying orbital transfer and gravitational capture cases, where
the starting and end points in the sphere of influence of the
primary are specified.
It is also worth noting that this study aims to compare the

different ways of using the TFC method, focusing especially on
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Figure 11. Ratio between errors of IVP in Inertial frame (a) and (b),
BVP in Inertial frame (c) and (d), BVP in Rotating frame (e) and (f) and
the reference IVP in Rotating frame in function of number of terms of
polynomial series considered in the calculations. See Table 2 for caption
details.

the initial solution (𝝈0). The TFCmethod allows, as already stated
above, to obtain a solution with machine error level error with
few iterations.
Finally, we will reflect on the conditions in which there is

capture (escape in backward integration) or not captured (collision
with the primary or orbit without crossing the sphere of influence).
The solution of system given by Eq. 22 depends on the reversal of
the matrix Υ, whether it is a direct inverse through a method such
as Moore-Penrose or through a pseudo-inverse as in methods QR
decomposition, SVD decomposition and Cholesky decomposition
(Leake et al., 2022).
Suppose we want to study a boundary value problem in a

rotating system. If the initialization of the method (values of
r13 and r23) is performed arbitrarily and intuitively, without the
use of numerical integration, it should be impossible to solve the
system because Υ should not present an inverse, or if an initial
solution is obtained, the solution certainly should diverge in the
"optimization" step because the solution cannot converge to the
final solution. Future studies may address these verifications,
including the application of the expressions derived in this study.

6. CONCLUSIONS

The problem of gravitational capture, modeled through the
circular restricted problem of three bodies, can be solved through
the TFC, both for the initial value and boundary value problems
in both reference systems (inertial or rotating).
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Figure 12. Ratio between errors of (IVP - Inertial) or (BVP - Inertial) or
(BVP - Rotating frame) and the reference (IVP-Rotating frame) in function
of total instant of times evaluated. See Table 2 for caption details.

The initial TFC solution (before optimization) has a lower error
when the number of polynomials used in the calculation is equal
to the total number of time instants evaluated. This is due to the
fact that the matrix Υ is square.
For the case analyzed in this study, from the Yamakawa thesis,

errors for the initial solution (𝝈0) were equivalent for all cases
except for the IVP in the rotating system, which presented a lesser
response to𝑚 > 10.
The inverse of the matrix Υ is a means to infer whether

gravitational capture is possible in a time interval [0 -𝑡𝑓], as it
indicates whether there is an exhaust from the influence sphere
in a backward integration.
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