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Abstract

In this study, we present the impact of the mass-assignment scheme (MAS) on the estimation of the power spectrum and bispectrum in
simulations of structure formation. We used numerical simulations to study the aliasing effect for both power spectrum and bispectrum
estimation using the classical MAS, such as Nearest Grid Point, Cloud In Cell, and Triangular Shaped Cloud, to estimate, which suffers
from a smaller aliasing effect for both small and large scales. We propose a new set of MAS, the NJ1, NJ2, and NJ3 functions, and study
its aliasing effect, obtaining an improvement with respect to the classical schemes without the need for additional computational resources.
We show that with the newly proposed MAS, we achieve comparable or even better performance in the aliasing of the power spectrum and
bispectrum at the expense of a lower computational cost compared to high-order interpolation schemes such as PCS, resulting in an
effective improvement in the estimation of the power spectrum and bispectrum.

Resumen

En este trabajo se estudia el impacto del esquema de asignación de masa (MAS) en la estimación del espectro de potencias y el
biespectro en simulaciones de formación de estructuras. Se usan simulaciones numéricas para estudiar el aliasing effect para el espectro
de potencias y el biespectro usando esquemas clásicos de asignación de masa como Nearest Grid Point, Cloud In Cell y Triangular
Shaped Cloud con el ánimo de determinar cuál sufre del menor aliasing effect en grandes y pequeñas escalas. Proponemos un nuevo
conjunto de MAS, las funciones NJ1, NJ2 y NJ3 y estudiamos su aliasing effect, obteniendo una mejoría en relación con los esquemas
clásicos a expensas de un menor costo computacional. Mostramos que con estos nuevos MAS, se alcanzan resultados comparables, o
mejores, en la estimación del espectro de potencia y biespectro a un costo computacional reducido, cuando se le compara con funciones
de interpolación de orden superior como PCS, resultando en una mejora efectiva en la estimación del espectro de potencia y biespectro.

Corresponding author: J. C. Muñoz-Cuartas E-mail address: juan.munozc@udea.edu.co
Received: July 31, 2024 Accepted: July 22, 2025

1. Introduction

Large-scale structure (LSS) is believed to form from primordial
fluctuations caused by gravitational instabilities in the early
Universe (Scoccimarro, 1997). In order to characterize
quantitatively the clustering of these structures, different
statistical methods are used to infer properties that can give
constraints to cosmological models as well to cosmological
parameters (e.g. Gil-Marín et al., 2015). Because the statistical
independence of the Fourier modes of a homogeneous random
field, these statistics are expressed in Fourier space, making the
study of these fields easier (e.g. Peebles, 1980; Martínez & Saar,
2002).
The matter power spectrum is one of the most common

statistical measures of gravitational clustering. Its importance lies
in the fact that for a Gaussian random field, the power spectrum
describes completely its statistical properties (Bernardeau et al.,
2002). Nonetheless, a complete description for a non-Gaussian
distribution, which can be primordial or can emerge from non-

linear processes, requires the use of higher-order correlation
functions (Peebles, 1980). The bispectrum is a standard probe
for studying non-Gaussianities in the LSS. It is the lowest-order
indicator of this kind of these features in the primordial density
field, providing constraints on inflationary models and insights
into non-linear phenomena such as structure formation and
galaxy bias (e.g. Scoccimarro, 2000; Gil-Marín et al., 2015).
The problem of measuring Fourier mode statistics from a

distribution of points – as the case of N-body simulations or galaxy
surveys – is taking great importance, particularly, in the context
of the one-percent accuracy era. Fourier mode statistics involves
the use of a mass assignment scheme, which interpolates the
point mass distribution onto a regular grid, to then compute a
fast Fourier transform. Nevertheless, this sampling to a regular
grid results in a convolution with a window function and a
product with a sampling function (Jing, 2005; Sefusatti et al.,
2016). Therefore, two effects are introduced; a decreasing of the
modes at small scales and aliasing due to the finite resolution
of the grid (Hockney & Eastwood, 1981; Colombi et al., 2009).
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Besides, there is an additional term induced because of the
discreteness of the distribution. The shot-noise term can be easily
corrected but the aliasing effect is not straightforward to deal with.
Jing (2005) derived an expression for the aliasing in the power
spectrum independent of the window function. This iterative
method corrects the aliasing effect but cannot be applied to the
bispectrum. Colombi et al. (2009) proposed a method to estimate
the Fourier coefficients based on the Taylor expansion of the
trigonometric functions and developed a public tool, powmes.
Sefusatti et al. (2016) employed a procedure that interlaces two
density grids to remove alias contribution, which led to errors
for the Cloud-In-Cell method nearly below 0.1 percent for the
power spectrum up to the Nyquist wavenumber and below 0.1
percent for 𝑘 ≤ (2∕3) 𝑘N, but at the cost of doubling the number of
operations and the amount of memory required. Cui et al. (2008)
proposed instead a desirable window function in which the effect
of aliasing is reduced, particularly, they used the scaling functions
of the Daubechies wavelet transform, getting an error in the power
spectrum estimation with respect to theoretical predictions below
2 percent for 𝑘 ≤ 0.7 𝑘N, but they did not do an analysis with
respect to an alias-free estimation neither they try to use this kind
of mass assignment scheme for bispectrum estimation, even so,
they claimed it as a good mass-assignment scheme for Fourier
statistics.
In this work, we study systemically the effect of aliasing effect

in the power spectrum and bispectrum for the traditional mass
assignment schemes (MAS), Nearest Grid Point (NGP), Cloud
In Cell (CIC) and Triangular Shaped Cloud (TSC). Then, we
propose a set of newmass assignment schemes: the NJ1, NJ2, and
NJ3 functions, aiming to improve with respect the classical mass
assignment schemes without the need of more computational
resources. The structure of the paper is as follows: First, an
introduction to the problem is presented. Next, in § 2 and 3
we present definitions and the formalism associated with the
estimation of Fourier statistics of the density field. Then in § 4
we present our proposal for a new set of MAS, the NJ functions,
namely, NJ1, NJ2, andNJ3. In § 5 and 6wedescribe our numerical
experiments an results on the estimation of the power spectrum
and bispectrum for the new MAS functions, NJ1, NJ2, and NJ3.
Finally, § 7 presents the results and conclusions of this study.

2. Fourier statistics

At large-scales, LSS dynamics is governed by its density contrast
𝛿(𝐱), with the matter distribution given by 𝜌(𝐱) = 𝜌 [1 + 𝛿(𝐱)]
(Bernardeau et al., 2002). Statistical tools are used to study
the properties of fields with cosmological fluctuations owing to
the lack of direct observational access. The large time scales
involved make it impossible to track the temporal evolution of
individual systems (Bernardeau et al., 2002; Martínez & Saar,
2002). The initial density fluctuation is modeled as a realization
of an ensemble (Fry, 1984). Additionally, as a consequence of the
cosmological principle, the matter density field has the property
of being statistically homogeneous and isotropic (Mo, van den
Bosch, & White, 2010).
Knowledge of distinct large-scale statistical properties can

provide information about the nature of primordial overdensities,
different possible inflationary scenarios, as well as give constraints
on cosmological parameters and information about different non-
linear phenomena such as gravity. The probability distribution
function is completely described by its moments, which are

defined as the expected values of the product of the fields at
different points of space (Mo et al., 2010; Gil-Marín et al., 2014).

2.1. Fourier representation

Density fluctuations are usually described in terms of its Fourier
components,

𝛿(𝐤) = ∫ d3𝐱 𝛿(𝐱) e−i𝐤⋅𝐱, (1)

where the integral is taken over the volume 𝑉 = 𝐿3. Under these
conditions, the perturbation field can be assumed as periodic and
with 𝐤 = 𝑘f𝐧 = 𝑘f (𝑖𝑥 , 𝑖𝑦 , 𝑖𝑧), with 𝑘f = 2𝜋∕𝐿 the fundamental
frequency and 𝑖𝑥 , 𝑖𝑦 , 𝑖𝑧 integer numbers.
Additionally, we can define the Dirac delta function as

𝛿𝐷(𝐤) = ∫ d3𝐱
(2𝜋)3

e±i𝐤⋅𝐱 (2)

and its discrete version, the Kronecker delta,

𝛿𝐾𝐤 = {
1 if 𝐤 = 𝟎
0 otherwise,

(3)

such that the continuous limit is recovered for𝑉 → ∞ (or 𝑘f → 0)
with (Sefusatti et al., 2016)

lim
𝑘f→0

𝛿𝐾𝐤
𝑘3f

= 𝛿𝐷(𝐤). (4)

The reason to work in Fourier space is because it allows
to separate 𝛿 according to the scale, preserving its statistical
properties. As 𝛿(𝐱) is a real quantity, we have that 𝛿(𝐤) is
hermitian, i.e., 𝛿(𝐤) = 𝛿∗(−𝐤), consequently, we only need the
upper (or lower) half space to completely specify 𝛿(𝐱) (Mo et al.,
2010).

2.2. Power spectrum

The power spectrum 𝑃(𝑘) is the simplest Fourier statistic that
allows to characterize the clustering pattern of the matter density
field. It is the Fourier transform of the two point correlation
function and is defined as

⟨𝛿(𝐤1)𝛿(𝐤2)⟩ = (2𝜋)3 𝛿𝐷 (𝐤1 + 𝐤2) 𝑃(𝑘1), (5)

where the Dirac delta function indicates the connected part
between wavevectors 𝐤1 and 𝐤2. The symbol ⟨⋯⟩ denotes the
ensemble average over independent realizations of the Universe,
under the ergodicity hypothesis the average over different
directions of 𝐤 will give the same resulting in an ensemble average
(Gil-Marín et al., 2012).
The power spectrum is the Fourier transform of the two point

correlation function, which is related to the second moment
of the random field 𝛿. Because of this, it is common to use
power spectra as a tool to characterize the clustering pattern,
in particular, in the large scales, where different modes can be
treated independently. For a Gaussian random field the power
spectrum describes the statistical features of the data. The galaxy
power spectrum has been extensively used in the literature to
constraint structure formation, cosmological parameters as well
as galaxy bias models, giving valuable information that helped
to establish the ΛCDM as the standard cosmological model (see
Gil-Marín et al., 2012; Martínez & Saar, 2002; Bernardeau et al.,
2002, and references therein).
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Figure 1. Left panel: One-dimensional window function in real space𝑊(𝑥) of the classical mass assignment schemes NGP, CIC, TSC, and PCS. Right
panel: the same window functions in Fourier space𝑊(𝑘).

2.3. Bispectrum

When a random field is not-Gaussian, it is necessary to use
higher-order correlation functions to characterize their statistical
properties. The next statistic of interest is the bispectrum or the
three-point correlation function in Fourier space, defined as

⟨𝛿(𝐤1)𝛿(𝐤2)𝛿(𝐤3)⟩ = (2𝜋)3 𝛿𝐷(𝐤1 + 𝐤2 + 𝐤3) 𝐵(𝑘1, 𝑘2, 𝑘3). (6)

For this case, the Dirac delta demands that the bispectrum
has to be non-zero only for wavevector configurations that make
closed triangles, i.e., 𝐤1 + 𝐤2 + 𝐤3 = 0. Note that the product
𝛿(𝐤1)𝛿(𝐤2)𝛿(𝐤3) is in general a complex number but, because the
hermiticity of 𝛿(𝐤), once the mean is taken the imaginary part
goes to zero (Gil-Marín et al., 2012).
It is usual to define the reduced bispectrum 𝑄 as

𝑄(𝑘1, 𝑘2, 𝑘3) =
𝐵(𝑘1, 𝑘2, 𝑘3)

𝑃(𝑘1)𝑃(𝑘2) + 𝑃(𝑘2)𝑃(𝑘3) + 𝑃(𝑘3)𝑃(𝑘1)
. (7)

Although this quantity does not give any additional information
to the power spectrum and bispectrum, it has been historically
used in cosmology because is the associated hierarchical
amplitude for the bispectrum and its weakly dependence on
cosmology and scale.
For a Gaussian random field the bispectrum is null, therefore, it

could help to study primordial non-Gaussianity which opens the
possibility to distinguish between different inflationary models
(Schmittfull, Regan, & Shellard, 2013). In addition, whether
or not the random field is initially Gaussian or not, when non-
linear processes – such as gravitational collapse – are present,
they introduce non-Gaussianities, allowing bispectrum to be used
to extract information on non-linearities in galaxy clustering.
Besides, galaxy biasing also introduce non-linear effects in the
density field, letting us to use bispectrum as an important tool to
study galaxy bias at large scales (Matarrese et al., 1997; Gil-Marín
et al., 2015).

3. Mass assignment schemes and aliasing

3.1. Classical mass assignment schemes

In order to use Fast Fourier transform algorithms, it is necessary to
sample mass density into a regular grid. This is done by spreading
out the particle distribution to the desired grid points with the
help of mass assignment scheme (MAS).
For a distribution of points with 𝑁p particles, the grid mass at

𝐱g is given by

𝑚̃(𝐱g) =
𝑁p∑

𝑖=1

𝑚𝑖𝑊
(
𝐱g − 𝐱𝑖

)
, (8)

with𝑚𝑖 and 𝐱𝑖 the mass and position of the 𝑖-th particle. Themass
assignment to a grid-point 𝐱g is formulated as a convolution of
the mass density with a window function𝑊 (Jeong, 2010). The
window function quantifies howmass is distributed to a grid point
separated by a distance ||||𝐱g − 𝐱′||||. The sampling of the convolved
density contrast to a regular grid of size 𝑁3 is simply

𝛿(𝐱g) =
𝜌(𝐱g)

𝜌
− 1. (9)

Because of the convolution theorem, the resulting Fourier
transform of the density contrast is

𝛿(𝐤) = 𝛿(𝐤)𝑊(𝐤). (10)

The window function can be represented in an unique way
given a mass assignment scheme by means of the integral of
the cell volume centered at 𝐱g of the so-called shape function
𝑆(𝐱) (Hockney & Eastwood, 1981; Jeong, 2010). For the one-
dimensional case we have

𝑊(𝑥) = 1
𝐻 ∫

𝑥g+𝐻∕2

𝑥g−𝐻∕2
d𝑥′ 𝑆(𝑥′ − 𝑥), (11)

where𝐻 = 𝐿∕𝑁 is the grid size. With the definition of the top-hat
function Π(𝑥),

Π(𝑥) =
⎧

⎨
⎩

1 if |𝑥| < 1∕2
1∕2 if |𝑥| = 1∕2
0 otherwise

(12)
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and constraining 𝑆 to even functions, we can write (11) as

𝑊(𝑥) = 1
𝐻 ∫ d𝑥′Π(𝑥

′

𝐻 )𝑆(𝑥 − 𝑥′) = 1
𝐻Π

( 𝑥
𝐻

)
∗ 𝑆(𝑥). (13)

Therefore, the window function corresponds to the convolution
of the shape function using a top-hat function. The most common
classical mass assignment schemes are the Nearest Grid Point
(NGP), Cloud In Cell (CIC), Triangular Shaped Cloud (TSC) and
Piece-wise Spline (PCS), where

• NGP

𝑊NGP(𝑥) =
⎧

⎨
⎩

1 if |𝑥| < 𝐻∕2
1∕2 if |𝑥| = 𝐻∕2
0 otherwise.

(14)

• CIC
𝑊CIC(𝑥) = {

1 − |𝑥|∕𝐻 if |𝑥| < 𝐻
0 otherwise.

(15)

• TSC

𝑊TSC(𝑥) =

⎧
⎪

⎨
⎪
⎩

3

4
−
( 𝑥

𝐻

)2
if |𝑥| ≤ 𝐻

2
1

2

( 3
2
− |𝑥|

𝐻

)
if 𝐻

2
≤ |𝑥| ≤ 3𝐻

2
0 otherwise.

(16)

• PCS

𝑊PCS(𝑥) =

⎧
⎪

⎨
⎪
⎩

2

3
−
( 𝑥

𝐻

)2
+ 1

2

( |𝑥|
𝐻

)3
if |𝑥| < 𝐻

1

6

(
2 − |𝑥|

𝐻

)3
if𝐻 ≤ |𝑥| < 2𝐻

0 otherwise.
(17)

The three-dimensional form of the window function in real
space is given as𝑊(𝐱) = 𝑊(𝑥)𝑊(𝑦)𝑊(𝑧). Given a wavevector 𝐤,
the Fourier transform of the window functions for the classical
mass assignment schemes is

𝑊(𝐤) = [
sin(𝜋𝑘𝑥∕2𝑘N) sin(𝜋𝑘𝑦∕2𝑘N) sin(𝜋𝑘𝑧∕2𝑘N)

(𝜋𝑘𝑥∕2𝑘N) (𝜋𝑘𝑦∕2𝑘N) (𝜋𝑘𝑧∕2𝑘N)
]
𝑝

, (18)

with 𝑝 either 1, 2, 3 or 4 for NGP, CIC, TSC, and PCS, respectively
and 𝑘N = 𝜋∕𝐻 is the Nyquist wavenumber.
In the left panel of Figure 1 we show the one-dimensional form

of these window functions in real space while in the right panel
we show the corresponding window functions in Fourier space.

3.2. Aliasing

The fast Fourier transformed density contrast must be previously
sampled from a homogeneous grid. This sampling can be
mathematically expressed in real space by means of the so-called
sampling function (Jeong, 2010; Sefusatti et al., 2016; Hockney &
Eastwood, 1981), defined as

III(𝐱) =
∑

𝐧

𝛿𝐷(𝐱 − 𝐧), (19)

with 𝐧 being an integer vector. Thus, we can express the sampled
field compactly as

𝛿G(𝐱) = III
( 𝐱
𝐻

)
[𝛿(𝐱) ∗ 𝑊(𝐱)] . (20)

By means of the convolution theorem we have

𝛿G(𝐤) = 𝑘3f
∑

𝐤′
III (𝐤′) 𝛿(𝐤 − 𝐤′), (21)

with 𝛿(𝐤) the Fourier transform of the convolved density field, the
superscript G means that the density contrast was sampled on a
regular grid. The Fourier transform of a sampling function is also
a sampling function (with the appropriate periodic conditions in
the Fourier representation). Because of the 2𝑘N periodicity we
have then

III(𝐤) = 1
𝑘3f

∑

𝐧

𝛿𝐾𝐤+2𝑘N𝐧. (22)

As a consequence, we have (see Sefusatti et al., 2016)

𝛿G(𝐤) =
∑

𝐧

𝛿(𝐤 + 2𝑘N𝐧) =
∑

𝐧

𝑊(𝐤 + 2𝑘N𝐧)𝛿(𝐤 + 2𝑘N𝐧). (23)

Therefore, the finite sampling of the convolved density field
becomes a sumof aliasing contributions, which ismore significant
near to the Nyquist wavenumber and has to be corrected for a
precise estimation. The “corrected” grid-sampled density contrast
is obtained by dividing with the window function in Fourier space,

𝛿G(𝐤) =
𝛿G(𝐤)
𝑊(𝐤)

= 𝛿(𝐤) +
∑

𝐧≠𝟎

𝑤𝐧(𝐤) 𝛿(𝐤 + 2𝑘N𝐧), (24)

with 𝑤𝐧(𝐤) = 𝑊(𝐤 + 2𝑘N𝐧)∕𝑊(𝐤). The term 𝐧 = 𝟎 provides the
desired density contrast 𝛿(𝐤), while other terms mean that values
outside of the The Nyquist wavenumber was incorrectly moved
within this range. These unwanted contributions to the density
contrast due to the alias sum are related with both the small-scale
features and with the value of the 𝑤𝐧(𝐤) ratio.
Aliasing also affects the estimated power spectrum such that

the “deconvolved” estimation is given by (Jing, 2005)

𝑃G(𝑘) = 𝑃d(𝑘) +
∑

𝐧≠𝟎

|||𝑤𝐧(𝐤)|||
2 𝑃d (|𝐤 + 2𝑘N𝐧|) , (25)

with
𝑃d(𝑘) = 𝑃(𝑘) + 𝑃SN, (26)

being 𝑃SN = 1∕𝑛 the discreteness or shot-noise term. For
bispectrum, the aliasing effect, with 𝐵G123 = 𝐵G(𝐤1, 𝐤2, 𝐤3), is given
by

𝐵G123 =
∑

𝐧1 ,𝐧2 ,𝐧3

𝑤𝐧1 (𝐤)𝑤𝐧2 (𝐤)𝑤𝐧3 (𝐤) 𝐵
𝑑(𝐤′

1, 𝐤
′
2, 𝐤

′
3), (27)

with 𝐤′
𝑖 = 𝐤𝑖 + 2𝑘N𝐧𝑖 and

𝐵d(𝐤1, 𝐤2, 𝐤3) = 𝐵(𝐤1, 𝐤2, 𝐤3) + 𝐵𝑆𝑁(𝐤1, 𝐤2, 𝐤3), (28)

where 𝐵𝑆𝑁(𝐤1, 𝐤2, 𝐤3) = [𝑃(𝑘1) + 𝑃(𝑘2) + 𝑃(𝑘3)] ∕𝑛 + 1∕𝑛
2 is

bispectrum-associated shot noise term. For both power spectrum
and bispectrum, we have to deconvolve the window function.
This is because of the imprint of the mass assignment scheme in
these quantities. Consequently, when using a MAS, the measured
power spectrum and bispectrum are biased estimations of the
real functions. The measured quantity is a statistic of the density
contrast convolved with the window function and the so-called
sampling function. Therefore, the estimated power spectrum and
bispectrum will show an artificial suppression mainly noted at
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Figure 2. Left panel: one-dimensional plot of the modified version of classical mass-assignment schemes in real space. Right panel: associated window
functions in Fourier space.

𝑘 ∼> 0.7𝑘N (Jeong, 2010; Sefusatti et al., 2016;Hockney&Eastwood,
1981).

4. Derived classical-like mass assignment schemes

The definition of the new mass assignment schemes proposed for
this work lies on classical ones such as NGP, CIC, and TSC. We
define them as

𝑊(𝑥) = 1
3 [𝑊

cl (𝑥 − 1
2) +𝑊cl (𝑥) +𝑊cl (𝑥 + 1

2)] , (29)

where𝑊𝑐𝑙(𝑥) refers to the window function of a given classical
mass assignment scheme. According to the mass assignment
scheme used, the derived schemes are called NJ1 for NGP, while
NJ2 and NJ3 for CIC and TSC schemes. With this, the precise
definition of the The newly derived mass assignment schemes are
presented in Eqs. 30, 31 and 32, respectively.

𝑊NJ1(𝑥) = 1
3 [𝑊NGP (𝑥 − 1∕2) +𝑊NGP (𝑥) +𝑊NGP (𝑥 + 1∕2)]

= 1
3

⎧
⎪
⎪

⎨
⎪
⎪
⎩

2 if |𝑥| < 1

2
3

2
if |𝑥| = 1

2
1 if 1

2
< |𝑥| < 1

1

2
if |𝑥| = 1

0 otherwise,

(30)

𝑊NJ2(𝑥) = 1
3 [𝑊CIC (𝑥 − 1∕2) +𝑊CIC (𝑥) +𝑊CIC (𝑥 + 1∕2)]

= 1
3

⎧
⎪

⎨
⎪
⎩

2 − |𝑥| if |𝑥| < 1

2
5

2
− 2|𝑥| if 1

2
≤ |𝑥| < 1

3

2
− |𝑥| if 1 ≤ |𝑥| < 3

2
0 otherwise,

(31)

𝑊NJ3(𝑥) = 1
3 [𝑊TSC (𝑥 − 1∕2) +𝑊TSC (𝑥) +𝑊TSC (𝑥 + 1∕2)]

= 1
3

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

7

4
− 3

2
𝑥2 if |𝑥| ≤ 1

2
17

8
− 3

2
|𝑥| if 1

2
< |𝑥| ≤ 1

𝑥2 − 7

2
|𝑥| + 25

8
if 1 < |𝑥| ≤ 3

2
𝑥2

2
− 2|𝑥| + 2 if 3

2
< |𝑥| ≤ 2

0 otherwise.

(32)

The left panel of Fig. 2 shows a one-dimensional plot of these
new window functions. By comparing with Figure 1, we can
observe that these newly derivedmass assignment schemes spread
as the next-order interpolator of the progenitor mass assignment
scheme. For instance, the NJ2 function spreads like that of
TSC. However, these new mass assignment schemes run faster
than the next-order classical interpolator because our new mass
assignment schemes inherit the operation order of the progenitor
mass assignment schemes, making them run even until 60% of
the next-order progenitor interpolator time.
By making use of the modulation theorem, the Fourier

transform of these modified window functions are given by

𝑊(𝑘) = 1
3

⎡
⎢
⎢
⎢
⎣

sin ( 𝜋𝑘

2𝑘𝑁
)

( 𝜋𝑘

2𝑘𝑁
)

⎤
⎥
⎥
⎥
⎦

𝑝

{2 cos ( 𝜋𝑘
2𝑘𝑁

) + 1} , (33)

with 𝑝 = 1, 2, 3 for the NJ1, NJ2 and NJ3 window functions
respectively, in the left panel of Figure 2 we show the plot of
the one-dimensional Fourier transform for each derived window
function, again by comparing with the right panel of Figure 1
we can see how there is a suppression of wings associated with
aliasing owing to the modulation of window function.
Again, the advantage of these modified classical-like mass

assignment schemes is that there is a reduction in the aliasing
contribution owing to themodulation given by the cosine factor in
(33). In Figure 3 we show the alias contributions of the classical
MAS and our derived versions. For this, we use an estimator
given by the residual terms due to the alias contribution defined as∑

𝑛≠0 |𝑊(𝑘 + 2𝑘𝑛𝑛)∕𝑊(𝑘)|2 (Sefusatti et al., 2016); if the residual
contribution is higher, then the alias contribution increases. For
each of the derived schemes we got for the residuals at 𝑘 ∼ 0.7𝑘𝑁
an improvement even close to two orders of magnitude with
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Figure 3. Plot of the one-dimensional residual induced by the alias sum
of the classical MAS and the derived MAS studied in this work.

Table 1. Cosmological Parameters

ΩΛ 0.742
Ωm 0.258
Ωb 0.0438
ℎ 0.72
𝑛s 0.96
𝜎8(𝑧 = 0) 0.796
𝑚p 3.4145×1010 M⊙

respect to their corresponding progenitor MAS, providing an
initial perspective on the use of these derived functions.

5. N-body simulations

The simulation used for this work consisted of a cosmological box
of size 𝐿 = 400Mpch−1, with a particle number of 𝑁p = 5123
which was performed using the code gadget2 (Springel, 2005),
with the cosmological parameters summarized in Table 1.
Due to the computation time, from the cosmological box we

estimated the Fourier transform by direct method as

𝛿(𝐤) = 1
𝑛̄

𝑁p∑

𝑖=1

e−𝑖𝐤⋅𝐱𝐢 − 𝑉𝛿𝐾𝐤 , (34)

where we used the Kronecker delta 𝛿𝐾𝐤 , defined to be one for 𝑘 = 0
and zero otherwise, and 𝑛̄ = 𝑁p∕𝑉.
For our estimates we used a mesh with a number of grids of

𝑁3
g = 643. Therefore, the results associated with FFT using

different MAS will also have the same number of grids. For
this box the associated fundamental wavenumber is given by
𝑘𝑓 = (2𝜋)∕𝐿 ≈ 0.0157 hMpc−1 and, with the given number of
grids, the associated Nyquist wavenumber is 𝑘N = (𝜋𝑁g)∕𝐿 ≈
0.5027 hMpc−1.

6. Results

6.1. Aliasing contribution on power spectrum
In this part we are going to test the effect of the aliasing on the
estimation of the power spectrum for these new derived window
functions.
In Figure 4 we show the absolute deviation of different mass

assignment schemes studied in this work against the result of the

0.0 0.2 0.4 0.6 0.8 1.0
k/k64N

10−8
10−7
10−6
10−5
10−4
10−3
10−2
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|P
64 FF
T/P
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T
−
1|

NGP
CIC
TSC
PCS

NJ1
NJ2
NJ3

Figure 4. Aliasing contribution on power spectrum. We show the
power spectrum obtained by taking FFT with different MAS against
the estimation with FT by direct summation. Filled lines represent
traditional mass assignment schemes, NGP (red), CIC (green) and TSC
(blu), while the plot we show the absolute value deviation for different
mass assignment schemes with respect to the alias-free Fourier transform.
All estimations were performed with N-body simulation with parameters
described in Table 1.

Fourier transform using a direct sum. For a better comparison,
we also include the deviation for the next order interpolator of
the TSC function, the Piecewise Cubic Spline (PCS; Sefusatti
et al., 2016). We found for the power spectrum a systematic
improvement for our modified versions with results of the same
order to the next order mass assignment scheme of the progenitor
window function, reaching absolute deviations at 𝑘 = 0.7𝑘𝑁 of
20%, 2%, 0.2%, 0.01% for the NGP, CIC, TSC and PCS window
function respectively while for our modified versions we got a
deviation of 9%, 0.3% and 0.008% forNJ1, NJ2 andNJ3 respectively.
Therefore, with the NJ functions we are obtaining comparable
contributions for the aliasing than the next order function for
the progenitor MAS which means we are reaching a more
accurate value for the power spectrum at the expenses of a lower
computational cost.

6.2. Aliasing contribution on bispectrum

In Figure 5 we show how aliasing works on the bispectrum for
our modifiedmass assignment schemes, NJ1, NJ2, NJ3, compared
with those of NGP, CIC, TSC, and PCS. Following (Sefusatti et al.,
2016), for the estimation of the bispectrum we took a set of
triangles with sides (𝑘1, 𝑘2, 𝑘3) with 𝑘1 ≥ 𝑘2 ≥ 𝑘3 going from
the fundamental frequency 𝑘𝑓 until the Nyquist wavenumber
𝑘𝑁 . In the figure, we plot the absolute deviation with respect
to the alias-free estimation versus 𝑘𝑚𝑎𝑥 = max(𝑘1, 𝑘2, 𝑘3). We
binned the data in intervals of width∆𝑘𝑚𝑎𝑥 = 0.02 𝑘𝑁 , we took the
median, represented as a continuous line and, to represent data
dispersion, we also show the first and third quartiles as a shadow
region around the median. In the left panel we show the classical
mass assignment schemes NGP, CIC, TSC and PCS, while for the
right panel we have the modified the classical window functions,
NJ1, NJ2, and NJ3.
As shown in the figure, for this new modified mass assignment

scheme,we obtain an improvement in terms of the reduction of the
aliasing contribution on the bispectrum with results comparable
to the next-order mass assignment scheme for the progenitor
function. Comparing with the results of Sefusatti et al. (2016)
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Figure 5. Aliasing contribution on bispectrum. For both panels, we display in the 𝑦-axis the absolute deviation with respect to the alias-free estimation
(obtained via a direct summation). Similar to Sefusatti et al. (2016), we took a set of triangles with sides (𝑘1, 𝑘2, 𝑘3) where 𝑘1 ≥ 𝑘2 ≥ 𝑘3 going from the
fundamental frequency 𝑘𝑓 until the Nyquist wavenumber 𝑘𝑁 and showed on the 𝑥-axis the value 𝑘𝑚𝑎𝑥 = max(𝑘1, 𝑘2, 𝑘3). After binning the data in
intervals with a width of ∆𝑘𝑚𝑎𝑥 = 0.02 𝑘𝑁 , we took the median, represented as a continuous line and, to represent data dispersion, the first and third
quartiles which are showed as a shadow around the median. In the left panel we have the classical mass assignment schemes (NGP, CIC and TSC)
while in the right we have the modified classical-like window functions: NJ1, NJ2, and NJ3. All estimations were made based on the N-body simulation
with parameters described in Table 1.
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Figure 6. Ratio of the computing time of the classical MAS against the
computing time of the relative (aliaswise) NJ function.

we have that our results are comparable with the bispectrum
contribution at 𝑘𝑚𝑎𝑥 ≈

2

3
𝑘𝑁 .

6.3. Computational performance

In order to study the computational cost of the proposedMASwith
the NJ functions, we performed a set of numerical experiments.
First, in order to make a fair experiment, we used the same

computing facility, and the same numerical setup was used for
all simulations. Then, for a set of grid sizes of 163, 323, 643, 1283,
2563 and 5123 we ran the estimation of the density field for each
MAS (NGP, CIC, TSC, PCS, NJ1, NJ2, and NJ3) ten times for each
grid size. For this experiment, we used the same simulation as
described in § 5. Then, we computed the median time consumed
for the code to estimate the density field for each MAS at a given
grid size.

In Figure 6 we compare the mean cpu time consumed for code
as a function of the grid size. Although by construction the NJ
functions are related with the classical MAS as NJ1→ NGP, NJ2
→ CIC, and NJ3→ TSC. As it is shown in Figure 5, the aliasing
contribution of the NJ functions are comparable to the next-order
interpolator, and this effect is more evident for NJ2, whose results
are comparable to those of TSC (especially for large scales) andNJ3
with PCS. In Figure 6, we show the computing time ratio between
CIC/NJ1, TSC/NJ2, and PCS/NJ3, since their alias contributions
to the power spectrum were similar.
As it can be seen, in all cases, the ratio is close or larger than

1, which means that in each case, the performance of the NJ
functions is better than the classical MAS used for comparison.
For the case of PCS/NJ3 and TSC/NJ2 the ratio is almost constant,
and we see an actual improvement when comparing PCS with
NJ3, with PCS being ∼ 1.3 times slower than PCS. There is no
much gain in our implementation when comparing TCS with NJ2,
where it can be seen that TCS is just ∼ 1.01 times slower than
that of NJ2. On the other hand, the ratio between the computing
time of CIC against NJ1 is not constant, and changes linearly from
∼ 1.4 to ∼ 1.28. Although in this case the ratio is not constant,
this behavior appears because at increasing the grid since, the
computing time per grid points is smaller (always) for NJ1, but
it changes faster for CIC than for NJ1 (CIC is slower than NJ1 at
lower values of the number of grid points).
This experiment confirms the benefit obtained with the use

of the NJ functions, which with a comparable aliasing effect
estimates the density field with a shorter computation time.

7. Summary and discussion

In this workwe studied the impact of themass assignment scheme
on the estimation of power spectrum and bispectrum of the
classical mass assignment schemes: NGP, CIC, and TSC. Based on
that study, we propose a new set of MAS, the NJ functions: NJ1,
NJ2 and NJ3 that are the result of classical MAS combinations.
We study the aliasing effect of for these mass assignment

schemes on the power spectrumand bispectrumandwe compared
the results with the classical mass-assignment schemes. We
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obtained for the estimation of the power spectrum and bispectrum
that our derived mass assignment schemes are similar or even
better to the next order mass assignment scheme of the progenitor
MAS, all this at expenses of a smaller computation cost and
without the need of extra memory, as for example, technique
described by Sefusatti et al. (2016). This gives a good perspective
for the use of these new mass assignment schemes. We found
also that the aliasing effect is improved even more for progenitor
window functions of a higher order.
For the bispectrum we found that there is a possible trend in

logarithmic scale for the aliasing contribution, which is desirable
to model the bispectrum corrections. These results are very
important for future studies of large scale Fourier statistics,
letting to obtain great precision without the need to use extra
computational resources relative to the classical mass assignment
schemes.
The results presented in this work could have an interesting

impact in the forthcoming years, where with the release of
ongoing large scale surveys, the precise estimation of Fourier
statistics of the density field in the large scales will be an important
subject in the study of cosmology and LSS.

This work was supported by Universidad de Antioquia, Comité
para el Desarrollo de la Investigación (CODI) project 2022-
53144 and by MINCIENCIAS, research project 111571250082
(convocatoria 715-2015). The authors thank the referee for their
useful comments.

REFERENCES

Bernardeau, F., Colombi, S., Gaztañaga, E., & Scoccimarro, R.
2002, PhR, 367, 1, doi: 10.1016/S0370-1573(02)00135-7

Colombi, S., Jaffe, A., Novikov, D., & Pichon, C. 2009, MNRAS,
393, 511, doi: 10.1111/j.1365-2966.2008.14176.x

Cui, W., Liu, L., Yang, X., et al. 2008, ApJ, 687, 738, doi: 10.1086/
592079

Fry, J. N. 1984, ApJ, 279, 499, doi: 10.1086/161913
Gil-Marín, H., Noreña, J., Verde, L., et al. 2015, MNRAS, 451, 539,
doi: 10.1093/mnras/stv961

Gil-Marín, H., Wagner, C., Fragkoudi, F., Jimenez, R., & Verde, L.
2012, JCAP, 2, 047, doi: 10.1088/1475-7516/2012/02/047

Gil-Marín, H., Wagner, C., Noreña, J., Verde, L., & Percival, W.
2014, JCAP, 12, 29, doi: 10.1088/1475-7516/2014/12/029

Hockney, R. W., & Eastwood, J. W. 1981, Computer Simulation
Using Particles (New York, NY: McGraw-Hill)

Jeong, D. 2010, PhD thesis, Cosmology with high (𝑧 > 1) redshift
galaxy surveys, University of Texas at Austin

Jing, Y. P. 2005, ApJ, 620, 559, doi: 10.1086/427087
Martínez, V. J., & Saar, E. 2002, Statistics of the Galaxy
Distribution (Chapman & Hall/CRC)

Matarrese, S., Verde, L., & Heavens, A. F. 1997, MNRAS, 290, 651,
doi: 10.1093/mnras/290.4.651

Mo, H., van den Bosch, F., & White, S. 2010, Galaxy Formation
and Evolution (Cambridge, UK: CUP), doi: 10.1017/CBO97805
11807244

Peebles, P. J. E. 1980, The large-scale structure of the universe
(Princeton, N.J.: Addison-Wesley)

Schmittfull, M. M., Regan, D. M., & Shellard, E. P. S. 2013, PhRVD,
88, 063512, doi: 10.1103/PhysRevD.88.063512

Scoccimarro, R. 1997, ApJ, 487, 1, doi: 10.1086/304578
—. 2000, ApJ, 544, 597, doi: 10.1086/317248
Sefusatti, E., Crocce, M., Scoccimarro, R., & Couchman, H. M. P.
2016, MNRAS, 460, 3624, doi: 10.1093/mnras/stw1229

Springel, V. 2005, MNRAS, 364, 1105, doi: 10.1111/j.1365-2966.20
05.09655.x

141

http://doi.org/10.1016/S0370-1573(02)00135-7
http://doi.org/10.1111/j.1365-2966.2008.14176.x
http://doi.org/10.1086/592079
http://doi.org/10.1086/592079
http://doi.org/10.1086/161913
http://doi.org/10.1093/mnras/stv961
http://doi.org/10.1088/1475-7516/2012/02/047
http://doi.org/10.1088/1475-7516/2014/12/029
http://doi.org/10.1086/427087
http://doi.org/10.1093/mnras/290.4.651
http://doi.org/10.1017/CBO9780511807244
http://doi.org/10.1017/CBO9780511807244
http://doi.org/10.1103/PhysRevD.88.063512
http://doi.org/10.1086/304578
http://doi.org/10.1086/317248
http://doi.org/10.1093/mnras/stw1229
http://doi.org/10.1111/j.1365-2966.2005.09655.x
http://doi.org/10.1111/j.1365-2966.2005.09655.x

	Introduction
	Fourier statistics
	Fourier representation
	Power spectrum
	Bispectrum

	Mass assignment schemes and aliasing
	Classical mass assignment schemes
	Aliasing

	Derived classical-like mass assignment schemes
	N-body simulations
	Results
	Aliasing contribution on power spectrum
	Aliasing contribution on bispectrum
	Computational performance

	Summary and discussion

