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PAPAPETROU’S EQUATIONS OF MOTION FOR AN EXTENDED TEST

BODY

William Almonacid1 and Leonardo Castañeda1

RESUMEN

A partir de la ecuaciones de movimiento de Dixon para cuerpos extendidos, calculamos las ecuaciones de
movimiento de Papapetrou para un cuerpo extendido de prueba en un espacio-tiempo de Schwarzschild, incor-
porando los términos relacionados con la fuerza y el torque, los cuales involucran momentos multipolares de
orden superior al dipolar. Con el fin de completar el sistema, introducimos la condición suplementaria de esṕın
de Corinaldesi-Papapetrou obteniendo como resultado las ecuaciones de movimiento en el sistema en reposo
del campo de Schwarzschild.

ABSTRACT

We use Dixon’s general equations of motion for extended bodies to compute the Papapetrou’s equations for
an extended test body in Schwarzschild space-time. We incorporate the force and torque terms which involve
multipolar moments. The Corinaldesi-Papapetrou spin supplementary condition is introduced to obtain the
equations of motion in the rest frame of the Schwarzschild field.

Key Words: celestial mechanics — gravitation — methods: analytical

1. INTRODUCTION

The general equations of motion for an extended
body in a given gravitational background were ob-
tained by Dixon (Dixon 1970, 1974) in multipole ap-
proximation of the body structure for any order. The
method involves the definition of a world-tube en-
closing the entire body, an appropriate foliation of
the spacetime and a convenient worldline represent-
ing the center of mass (CM), around which the mul-
tipole expansion are performed. The set of equations
for extended bodies is

F ν ≡
δpν

δs
−

1

2
SκλvµR ν

κλµ , (1)

Lκλ ≡
δSκλ

δs
− 2p[κvλ], (2)

where pν = Muν is the total four-momentum,
Sκλ is the spin tensor, F ν and Lκλ are the force and
torque linked with the structure of the body beyond
the quadrupole terms.

Even before Dixon’s work, Papapetrou (Papa-
petrou 1951; Corinaldesi & Papapetrou 1951) de-
rived the equations of motion of spinning test par-
ticles, which are the starting point for the analysis
of the precession of gyroscopes. We consider these
equations as a particular case of the equations (1-2),

1Observatorio Astronómico Nacional, Universidad
Nacional de Colombia, Bogotá, Colombia
(waalmonacidg@unal.edu.co, lcastanedac@unal.edu.co).

World tube of the test body

Fig. 1. The timelike world line enclosed by a world
tube. The spacelike hypersurfaces are orthogonal to
u

µ = (v0
,u) and v

µ = (v0
,v) is tangent to the world

line.

and compute the equations of motion for an extended
test body immersed in Schwarzschild spacetime. We
impose the Corinaldesi-Papapetrou spin supplemen-
tary condition which specifies the line γ representing
the motion of the center of mass.

2. NOTATION AND CONVENTIONS

The Schwarzschild metric in Cartesian coordi-
nates (t, xi) is written as

g00 = −eµ, gij = δij −
(1 − e−µ)

r2
xixj , (3)
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with eµ = − (1 − 2r0/r), and r0 = Gm/c2 being the
gravitational radius of the central body.

Usually to equations (1-2), supplementary condi-
tions are added which single out the worldline of the
CM. We apply the Corinaldesi-Papapetrou condition
which holds in the rest-frame of the Schwarzschild
field. As a consequence of this choosing the inde-
pendent components of the spin tensor reduces to
three, thus

Sk ≡
1

2
ǫijmδkmSij , (4)

3. EQUATIONS OF MOTION

Let λα to be a four-vector defined by

λ0 = c
2r0

r3
e−µrvṫ,

λ =
r0

r3

[

c2eµṫ2 + 2|v|2 −
1

r2

(

2 + e−µ
)

rv2

]

r,
(5)

and let the torque terms, related to high multi-
polar structure of the test body,

τ =
1

2
ǫijm

(

1

2
Lij +

1

v0
L0[ivj]

)

δkm, (6)

ςi =
δ

δs

(

1

v0
L0i

)

. (7)

Then, the non-geodesic equations of motion can
be expressed as

CM equation

d

ds
(M∗v

0) + M∗λ
0 − F 0 = 0, (8)

d

ds
(M∗v) + M∗λ +

3r0

r5
[(S · r)(r × v)

+e−µ(r · v)(r × S)
]

+ F−
r0

r3
e−µ(r× τ ) − ς = 0.

(9)

Spin equation

Ṡ −
r0

r3

[

2e−µ(r · v)S + 2(r · S)v − e−µ(v · S)r

−
1

r2

(

2 + e−µ
)

(r · v)(r · S)r

]

− τ = 0. (10)

Where differentiation with respect to the para-
meter s are denoted with a dot.

3.1. Effective Mass

In the equations (8-10), M∗ represents an effec-
tive mass associated with the mass of the body plus
an energetic component which results from the inter-
action between the multipolar structure of the body
and the spacetime curvature.

M∗ = M + Ms + ML, (11)

where M is a positive scalar comming from the
four-momentum definition. In general it is not con-
stant and its variation depends on the high multi-
polar structure. Hence, dM/ds vanishes whenever
one neglects the force and torque which arise from
the multipole moments of the body. Ms assumes the
characteristic form of a spin-orbit interaction energy
and ML represents the energy associated with the
interaction between the structure of the test body
and the gravitational fields. They are written as

Ms =
r0

Mr3
e−µ(r × p) · S, (12)

and

ML =
uσ

v0
L0σ. (13)

4. CONCLUSION

We have examined the Papapetrou’s equations of
motion for an extended body with arbitrary multipo-
lar structure. The terms related to force and torque
in the equations (8-10) are new contributions to the
motion of the spinning test body associated with the
quadrupole and higher multipolar structure of the
body, which depends on its stress-energy tensor and
the gravitational fields (Almonacid 2014). In the
dipole approximation this equations reduce to the
classical Papapetrou’s equations. Also, we present
an additional contribution to the mass of the body
in (13).
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