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ASTROBO: TOWARDS A NEW OBSERVATORY CONTROL SYSTEM FOR

THE GARCHING OBSERVATORY 0.6M

T. Schweyer1,2, P. Jarmatz2, and V. Burwitz1

RESUMEN

El recientemente instalado Telescopio del Observatorio del Campus de Garching (COG) de 0,6m de diámetro
engloba un amplio conjunto de instrumentos, incluyendo uno de gran campo y una variedad de espectrógrafos.
Para apoyar todos estos instrumentos y mejorar su uso temporal, hemos decidido desarrollar un nuevo sistema
de control partiendo de cero, que podrá permitir observaciones tanto en modo autónomo como en modo manual
(para prácticas de estudiantes). Está construido por medio de una arquitectura de servicios multi jerárquica,
que permite comunicaciones bien especificadas entre sus componentes independientemente del lenguaje de
programación usado. Su esquematización modular permite un prototipo rápido de sus componentes al igual
que una rápida implementación de un complejo software de control de la instrumentación.

ABSTRACT

The recently installed Campus Observatory Garching (COG) 0.6m telescope features a wide array of instru-
ments, including a wide-field imager and a variety of spectrographs. To support all these different instruments
and improve time usage, it was decided to develop a new control system from scratch, that will be able to
safely observe autonomously as well as manually (for student lab courses). It is built using an hierarchical
microservice architecture, which allows well-specified communication between its components regardless of the
programming language used. This modular design allows for fast prototyping of components as well as easy
implementation of complex instrumentation control software.

Key Words: techniques: miscellaneous — telescopes

1. INTRODUCTION

As part of a joint effort of MPA, the high en-
ergy group of MPE1, the TUM2 and the Excellence
Cluster Universe a small observatory was built. It
was setup in April 2013 to provide students on the
campus with a facility to do student lab courses,
small science research projects and instrument de-
velopment. It is located on the Garching research
campus, which is about midway between Munich and
Munich airport.

In the following we first describe the telescope
hardware and observatory infrastructure (§ 2) This
is followed by a short description of the requirements
and philosophy that drove the design of Astrobo
(§ 3). The architecture (§ 3.3) and the various sub-
systems (§ 5 – 9) are then described in greater detail.
As a last point we discuss a few operational issues
(§ 10).

1Max-Planck-Institut fuer extraterrestrische Physik,
Giessenbachstrasse 1, 85748 Garching, Germany
(welterde@mpe.mpg.de).

2Technische Universität München, Physik Dept., James-
Franck-Str., 85748 Garching, Germany.

2. THE OBSERVATORY

The 4.5m Baader Allsky clamshell dome is
located on the roof of the newly constructed
MPA/MPE administration building and is thermally
isolated from it. The dome can be controlled over a
simple serial protocol over RS232 and has a built in
UPS (Uninterruptible Power Supply) to automati-
cally close itself in case of a power cut.

The telescope is an CDK24 (Corrected Dall-
Kirkham) from Planewave, which has an aperture of
0.61m and an focal ratio of f/6.5. It is mounted on a
GM4000 HPS mount from 10micron, which commu-
nicates with the control computer via Ethernet. The
protocol is a fairly well documented extended version
of LX200 also used by other telescope mounts.

The various instruments (see section 2.2) at-
tach to the focuser and rotator unit IRF90 from
Planewave, which is controlled over a RS232 port.

2.1. Infrastructure

All devices are connected on individual ports
of network-enabled power distribution units (PDU),
which support SNMP (Case et al. 1990) and are fed
by the campus power grid. This allows for remote
and automatic management of the power state of all
relevant devices of the observatory.
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A NEW OBSERVATORY CONTROL SYSTEM 71

The Reinhardt MWS 9 weather station (with rain
and cloud sensor) is attached to a pylon located next
to the dome and supplies its sensor values every 2
seconds to an attached raspberry pi (small embedded
computer) over a RS232 connection. As an added
security measure the rain sensor has an additional
connection to the dome controller, which will trigger
an automatic closure of the dome.

In addition to the weather station we also have
the Allsky-340 camera from SBIG.

Additional sensors and actuators, such as var-
ious temperature sensors, a secondary rain sensor,
sky temperature sensor, focus motors, etc. are fore-
seen to be connected using Controller Area Network
(CAN).

2.2. Instruments

GOWI (Generic Off-the-shelf Wide-field Imager)
is a commercial SBIG STX-16803 camera with at-
tached filter wheel, which features a ON Semicon-
ductor KAF-16803 CCD. The CCD has 4096 by 4096
pixels of 9µm pixel size for a total field of view of 31
by 31 arcminutes. The camera also includes a ON
Semiconductor KAI-0340 (640 by 480 of 7.4µm pixel
size) as guiding CCD. The camera is attached to the
control computer via Ethernet as well as USB.

The attached filter wheel FW5-STX has 5 slots
for square 65mm filters, which contains Baader R,
G, B, white light, and 7nm Hα filters with very high
transmission (larger than 90%).

In addition to our main imaging camera, we have
two spectrographs available: DADOS and BACHES.
DADOS is a simple grating spectrograph with low
resolution.BACHES (Avila et al. 2007; Koz lowski
et al. 2014) is a slit-fed high-resolution echelle spec-
trograph.

Each spectrograph will have a Remote Calibra-
tion Unit (RCU) coupled to it via fiber that will
provide ThAr and a flat field lamp.

A fibre-fed echelle-spectrograph called LECHES
with much higher stability and slightly higher resolu-
tion than BACHES is currently being commissioned.

Also we are currently in the process of building a
new GAM (Guide Acquisition Module) for OPTIMA
(Kanbach et al. 2008), which is an existing photon-
counting photometer of MPE.

Finally we are in the process of constructing a
multiport adapter that will allow automated switch-
ing between up to 5 available instruments. Right
now it is necessary to manually switch instruments
by dismounting the old instrument and mounting the
new instrument. It will consist of 4 movable flip mir-
rors that can either divert the light off 90◦ to the side
or let it pass in the middle.

UI OCS

Instrument 0

Instrument 1

TCS

Hardware

Fig. 1. Simplified System Architecture (see sec. 3.3)

3. DESIGN PHILOSOPHY

Major design requirements that were identified
were: (a) Automated as well as powerful manual ob-
serving capabilities (b) Safe operations even in the
presence or absence of a human operator (c) reusable
and easily adaptable (other telescopes and new in-
strumentation)

3.1. Modularity

These days making the telescope software mod-
ular is an obvious point, but since there a multiple
paths one can take to achieve this goal, it is worth
mentioning regardless. The easiest approach would
be to use just split the program into modules using
whatever constructs the programming language used
offers.

Our approach is to use multiple programs (dae-
mons), which can be written in any programming
language and have them communicate over network
over a specified protocol. This way even distribut-
ing these daemons over multiple machines is easily
possible.

A number of other existing control systems
(Kubánek 2010; Stefanon et al. 2010; Nawrocki et al.
2010) also use this approach. However not all fol-
low our approach of explicit protocol specification,
subdivision of tasks, and multiple independent im-
plementations as far as we do. The communication
mechanism between the daemons is described in sec-
tion 4.

3.2. Safety

Writing bug-free code is difficult. Thus our ap-
proach is two-fold: (a) keep the executed code min-
imal and as simple as possible (b) have redundant
paths between sensor data collection and the hard-
ware for especially safety critical systems.

In our case the dome is the only system that
is extremely safety critical. The daemon domed

that talks to the dome over a serial connection is
extremely small and simple and thus fulfills require-
ment (a). But the higher-level daemons that take
care of observatory operations are not as simple and
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72 SCHWEYER, JARMATZ, & BURWITZ

thus much more prone to bugs. For this reason
we have a secondary daemon (called the safetyd),
which directly interfaces with the meteorologic sen-
sors and the domed, and provides certain hard-
limits, which cannot easily be overridden by a human
operator.

3.3. Architecture

The overall architecture of Astrobo consists of
several coupled subsystems that will be explained
in greater detail in the following sections (see fig.
1). At the lowest are the drivers needed to inter-
act with the actual hardware of the observatory (see
sec. 5). Built on top of those drivers the telescope
control system (TCS; see sec. 6) and the instrument
subsystem (see sec. 7) are built. Explicit encapsu-
lation of the telescope instruments is quite similar
to how the ESO framework (Pozna et al. 2008) is
structured. One layer up is the observatory control
system (OCS; see sec. 8), which provides complex
sequence execution (see sec. 8.1) and archival (see
sec. 8.2), as well as managing the general state of
the observatory. On top of the subsystem hierarchy
the user interface subsystem (UI; see sec. 9) provides
a homogeneous interface for manual observations as
well as automated observations.

4. COMMUNICATION LAYER

At the lowest level ZeroMQ (Hintjens 2013) is
used to handle message framing and certain mes-
saging pattern, such as publish/subscribe and re-
quest/response.

Since ZeroMQ only deals with arbitrary binary
messages we need to define a encoding format, for
which we have chosen XDR (Eisler 2006), since it
is standardized, has existing support in a number of
programming languages and is fairly easy to imple-
ment if that is not the case.

For mapping between programming language na-
tive structures and the serial XDR stream we de-
signed our own system which for now is called zrpc.
The syntax of the zrpc protocol files is derived from
Haskell with some modifications to make the syn-
tax no longer whitespace-sensitive (see fig. 2 for
example). It provides three functions: definition
of type structures, interprocess messages (multicast)
and request/reply commands. Commands have zero
or more arguments, can return one value and can
throw exceptions. Exceptions were deemed neces-
sary to provide a way to have them fail early and
provide information about the reason. By policy
commands should return as soon as possible. For
instance starting the exposure should not block un-
til it has finished.

Fig. 2. Shortened zrpc definition of the generic movement
protocol

But the main difference to most evaluated alter-
natives (such as google protocol buffers, ROS mes-
sages, Apache Thrift, etc.) are the variant types,
which are a common feature of type systems of func-
tional programming languages (see State in fig. 2
for an example). They allow clutter-free description
of complex states.

Another feature of zrpc is the integration of trace
tags on all messages, which get propagated auto-
matically using thread-local primitives. These allow
much easier debugging of distributed systems, since
typically it is difficult to correlate errors in one pro-
cess on one machine with actions in another process
on potentially another machine. This is a common
problem of distributed architectures.

As we believe this data serialization system will
be useful outside of Astrobo, it will be maintained
outside of the Astrobo project and will be available
separately. Right now we have two code generators,
one written in C++ and one written in Haskell, that
can generate code for three languages (C++, Python
and OCaml). This allows easy verification if the im-
plementation actually follows the specification.

Built on top of zrpc we have written a library
called astrobo-net, which provides higher-level func-
tionality for a few core protocols. Core protocols are
the variables protocol, which provides a database of
sensor values and changeable parameters, the move-
ment protocol (see fig. 2) and the safety protocol.

The safety protocol is a simple broadcast of a
timestamp-safe/unsafe tuple, which is sent every
couple of seconds by the previously mentioned safe-

tyd (see sec. 3.2). The library in this case only pro-
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A NEW OBSERVATORY CONTROL SYSTEM 73

vides a few convenience functions to correctly handle
timeouts and absence of messages (in case of network
interruption or the safetyd crashing).

The variable protocol provides a mechanism for a
daemon to provide a set of changeable parameters,
and read-only sensor and status values to other dae-
mons. Daemons that have to change process vari-
ables of other daemons have to first open them in
write mode. At this stage the daemon exporting the
variable can identify conflicting requests (which with
no explicit open/close semantic will be quite difficult
to identify).

5. HARDWARE DRIVERS

An observatory contains a lot of hardware that
needs to be managed. However, very rarely will dif-
ferent observatories have the exact same hardware
components nor a completely different set.

Thus to make the software as reusable as possible,
the hardware layer should be as modular as possi-
ble. There are different approaches to this problem:
e.g. ASCOM (Denny 2002) provides an API that
software can use to access hardware while being ig-
norant about finer details. This however has several
drawbacks: (a) it is windows-only (b) poorly imple-
mented (c) an API and not a network protocol (thus
being limited to running on the same machine).

RTS2 (Kubánek 2010) solves this much better
with a custom ASCII protocol. It probably also has
the widest range of hardware support besides per-
haps ASCOM. The protocol as it is implemented has
certain drawbacks as well: (a) protocol not defined
strictly (communication errors can occur at runtime)
(b) it uses a database model for changing hardware
parameters. The drawbacks of the database model
are that it makes reasoning about interleaved states
and reset states more difficult.

Our approach is to use a network protocol (see
section 4) as well, but with a much more explicit
and specific protocol specification than RTS2 does.
For parameters that should not (and potentially can-
not) be changed on short time scales (and thus don’t
suffer from the interleaving problem) we do however
use the database model as well (see sec. 4). This is
also true for sensor values, which cannot be changed.
Our database equivalent is implemented using a hi-
erarchical variable system, which allows daemons to
export a certain set of variables, change them and
subscribe to changes.

Two essential protocols for hardware interaction
are the generic movement protocol and the camera
protocol. The movement protocol (see fig. 2) is used
to control the dome, focuser, rotator and telescope.

TCS

Hardware

InstrumentOCS

tcsd

teld

10micron

focusd

Planewave

autoguidedinsdobsd

Fig. 3. Components of the TCS subsystem (see sec. 6
below)

6. TELESCOPE CONTROL

In addition to the various aspects of telescope
control (pointing, tracking and guiding) the tele-
scope control subsystem daemon (tcsd) also man-
ages the lightbeam and focus (see fig. 3).

For imaging with GOWI (see 2.2) rough point-
ing on the order of a couple of arcminutes is usually
good enough and easily achievable with our mount.
For slit- and fiber-fed spectrographs as well as pho-
tometers however more precise object positioning is
a must (≈ 1 arcsecond). Blind pointing of the tele-
scope is simply not good enough in this case for auto-
mated operation. Iteratively solving the astrometry
and offsetting until convergence is the algorithm we
intend to implement.

While short exposures up to 10 minutes are no
problem with our current mount, guiding beyond
that time scale is advised. This poses a special prob-
lem, since each instrument will need it’s own guide
camera and this somewhat breaks the instrument
submodule hierarchy. Implementing guiding also re-
quires a more realtime path between the guide cam-
era and the telescope mount. An easy approach to
this would be to have the autoguide daemon send
messages to the telescope mount daemon. Our ap-
proach is to have the telescope mount daemon sub-
scribe to a guide commands channel from the au-
toguide daemon (see fig. 3). This has the benefit
of there ever only being one autoguided process the
telescope listens to.

Light beam management involves controlling the
multiport adapter (see sec. 2.2) to select the correct
mirror configuration to divert the light towards the
currently active instrument.

Focus is also an important issue for all instru-
ments, since it strongly depends on temperature and
perhaps weakly on position. To make best use of
available observing time and get the best possible
image quality, the dependance on these parameters
should be correctly modeled and no refocusing dur-
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Done

Aborted

Error

Setup abort()

modify()

Ready

abort()
modify()

Running

start()

abort()

Archiving

Fig. 4. State Machine of high-level instrument subsystem
exposures (see sec. 7 below)

ing the night should be necessary.

7. INSTRUMENT SUBSYSTEM

Built on top of the hardware subsystem is the
instrument subsystem, which provides certain high-
level abstraction over the instrument-specific details.
It is designed with the assumption that a instrument
collects light from the sky for a certain duration of
time and should thus be suitable for instrumentation
ranging from simple cameras over photometers to
multi-object spectrographs.

The main component/access point is a
instrument-specific insd that takes care of all
instrument internals, proper startup/shutdown and
exposes a set of observation/exposure templates.

These templates expose a set of parameters,
which can be modified for each specific exposure.
This strikes the balance between complete encapsu-
lation of the instrument and facilitating the writing
of efficient observation sequences (see section 8.1 for
more details on sequences).

Each exposure in terms of the instrument sub-
system follows a certain state machine (see fig. 4),
which allows one or more exposure to be setup while
the previous one is still running (say changing the
filter while the chip is being read out or exposing
while downloading the image). An exposure is con-
sidered to be running until the data has completely
arrived in the memory of the camera driver. Also of
note is the fact that an exposure can be aborted at
any stage except during the archival stage. This is a
common requirement (Shortridge & Farrell 2004) to
ensure that the instrument is able to observe again as
soon as possible in case some unforseen event occurs.

8. OBSERVATORY SUBSYSTEM

The observatory daemon (obsd) takes care of
dome, instrumentation and telescope state. For the
dome it ensures the environmental soft-limits (such
as cloud coverage, humidity, wind or sun altitude)

OCS

obsd execd

TCS

tcsd

INS

GOWI

insd

INS

BACHES

insd

archived

Fig. 5. Detail view of interactions of observatory sub-
system components with other subsystems (see. sec. 8
below)

are always met and closes the dome if they are not.
It also monitors the state of all active instruments.

In the afternoon it first does the instrument
startup and then decides when to open the dome
based on sun altitude and M1 to outside tempera-
ture difference. During the twilights it executes the
calibration OB (Observing Block; see sec. 8.1) to
obtain twilight flats.

8.1. Sequence Execution

The execution daemon (execd) provides higher
levels of the software with powerful observing blocks
that can be scheduled as one unit. The observing
blocks are not limited to just using one instrument
and are also used for more complex tasks, such as
focusing.

The first prototype of this execution daemon is
written in and executes python scripts. These OB
scripts provide a external structure that can be mod-
ified just before executing similar to ESO BOB (Al-
laert 2007).

8.2. Archival

A single archived (archive daemon) is sub-
scribed to all exposure data channels of all data col-
lecting processes. On receiving a new exposure it
queries the sensord (sensor daemon) for all sensor
values between the start and end time of the ex-
posure (see fig. 6). The exposure data as well all
environment sensor values are stored in one HDF5
(Folk et al. 1999) file. Multiple exposures forming
one OB can also be easily stored in one file.

9. UI SUBSYSTEM

The top-most layer is the user-facing layer. This
is however not quite true, since special daemons like
GCN (Gamma-ray Coordinates Network; Barthelmy
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Fig. 6. Sequence diagram of one exposure of a typical
observation including the archival process of image and
environmental data

2008) or VOEvent (Williams & Seaman 2006) han-
dling will also be implemented using the UI protocol.
This gives a much more elegant overall design, since
one only has to implement one method for allow-
ing a user with higher priority to interrupt another
user. No special handling of GRB observations or
transient observations in general is required. Special
cases of even higher priority, such as occultations,
can be handled trivially this way.

Moving the knowledge of proposal priorities so
far to the edge in the architecture does come with
a price. Service Queues can only be implemented
at this level of the overall architecture. Thus the
UI daemon (uid) will quite likely be quite complex
compared to all other daemons in the system.

Since this daemon will be exposed to the out-
side world, extra care has to be taken to ensure the
safety of the network communication (use of TLS for
instance) and that bugs in the daemon implementa-
tion stays contained (no buffer overflows, etc.). Thus
using a memory-safe programming language is pretty
much required.

10. OPERATIONS

Operations in the context of the control system
essentially means installing the software on all rele-
vant machines, configuring it, running all necessary
components and dependencies and handling faults.

Since all linux distributions come with their own
package manager, manually installing Astrobo is not
considered a viable option for long-term maintain-
ability. Thus packaging all components at least for
Debian is a high priority for this project. These

days configuration is no longer a major concern with
a whole slew of different configuration management
tools on the market (Puppet, Ansible, etc.). Pro-
cess supervision is also a solved problem with soft-
ware like supervisord, consul, runit or even sys-

temd.
Monitoring is also a solved problem for the most

part in the system administrator world with tools
such as Nagios or Icinga. Centralized data logging
can also be achieved using standard protocols such
as syslog.

Our aim is to leverage as many industry-standard
tools as possible to enable normal system adminis-
trators to maintain the system without requiring too
much domain-specific knowledge. Additionally not
reinventing the wheel allows us to focus on more im-
portant aspects of the control software.
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